首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this important area of global change science.  相似文献   

2.
Elevated atmospheric CO2 can result in larger plants returning greater amounts of residue to the soil. However, the effects of elevated CO2 on carbon (C) and nitrogen (N) cycling for different soybean varieties have not been examined. Aboveground residue of eight soybean [Glycine max (L.) Merr.] varieties was collected from a field study where crops had been grown under two different atmospheric CO2 levels [370 micromol mol(-1) (ambient) and 550 micromol mol(-1) (free-air carbon dioxide enrichment, FACE)]. Senesced residue material was used in a 60-d laboratory incubation study to evaluate potential C and N mineralization. In addition to assessing the overall effects of CO2 level and variety, a few specific variety comparisons were also made. Across varieties, overall residue N concentration was increased by FACE, but residue C concentration was only slightly increased. Overall residue C to N ratio was lower under FACE and total mineralized N was increased by FACE, suggesting that increased N2 fixation impacted residue decomposition; total mineralized C was also slightly increased by FACE. Across CO2 levels, varietal differences were also observed with the oldest variety having the lowest residue N concentration and highest residue C to N ratio; mineralized N was lowest in the oldest variety, illustrating the influence of high residue C to N ratio. It appears (based on our few specific varietal comparisons) that the breeding selection process may have resulted in some varietal differences in residue quality which can result in increased N or C mineralization under elevated CO2 conditions. This limited number of varietal comparisons indicated that more work investigating varietal influences on soil C and N cycling under elevated CO2 conditions is required.  相似文献   

3.
Elevated carbon dioxide (CO2) concentrations in the atmosphere can stimulate plant growth and yield, whereas ground-level ozone (O3) concentrations cause the opposite effect in many areas of the world. Recent experiments show that elevated CO2 can protect some plants from O3 stress, but this has not been tested for most crop species. Our objective was to determine if elevated CO2 protects Irish potato (Solanum tuberosum L.) from foliar injury and suppression of growth and yield caused by O3. An O3-resistant cultivar (Superior) and an O3-sensitive cultivar (Dark Red Norland) were exposed from within 10 d after emergence to maturity to mixtures of three CO2 and three O3 treatments in open-top field chambers. The three CO2 treatments were ambient (370 microL L(-1)) and two treatments with CO2 added to ambient CO2 for 24 h d(-1) (540 and 715 microL L(-1)). The O3 treatments were charcoal-filtered air (15 nL L(-1)), nonfiltered air (45 nL L(-1)), and nonfiltered air with O3 added for 12 h d(-1) (80 nL L(-1)). Elevated O3 and CO2 caused extensive foliar injury of Dark Red Norland, but caused only slight injury of Superior. Elevated CO2 increased growth and tuber yield of both cultivars, whereas elevated O3 generally suppressed growth and yield, mainly of Dark Red Norland. Elevated CO2 appeared to protect Dark Red Norland from O3-induced suppression of shoot, root, and tuber weight as measured at midseason but did not protect either cultivar from O3 stress at the final harvest. The results further illustrate the difficulty in predicting effects of O3 + CO2 mixtures based on the effects of the individual gases.  相似文献   

4.
Carbon sequestration in soils might mitigate the increase of carbon dioxide (CO2) in the atmosphere. Two contrasting subtropical perennial forage species, bahiagrass (BG; Paspalum notatum Flügge; C4), and rhizoma perennial peanut (PP; Arachis glabrata Benth.; C3 legume), were grown at Gainesville, Florida, in field soil plots in four temperature zones of four temperature-gradient greenhouses, two each at CO2 concentrations of 360 and 700 micromol mol(-1). The site had been cultivated with annual crops for more than 20 yr. Herbage was harvested three to four times each year. Soil samples from the top 20 cm were collected in February 1995, before plant establishment, and in December 2000 at the end of the project. Overall mean soil organic carbon (SOC) gains across 6 yr were 1.396 and 0.746 g kg(-1) in BG and PP, respectively, indicating that BG plots accumulated more SOC than PP. Mean SOC gains in BG plots at 700 and 360 micromol mol(-1) CO2 were 1.450 and 1.343 g kg(-1), respectively (not statistically different). Mean SOC gains in PP plots at 700 and 360 micromol mol(-1) CO2 were 0.949 and 0.544 g kg(-1), respectively, an increase caused by elevated CO2. Relative SON accumulations were similar to SOC increases. Overall mean annual SOC accumulation, pooled for forages and CO2 treatments, was 540 kg ha(-1) yr(-1). Eliminating elevated CO2 effects, overall mean SOC accumulation was 475 kg ha(-1) yr(-1). Conversion from cropland to forages was a greater factor in SOC accumulation than the CO2 fertilization effect.  相似文献   

5.
White lupine (Lupinus albus L.) was used as a phosphorus (P)-efficient model plant to study the effects of elevated atmospheric CO(2) concentrations on (i) P acquisition, (ii) the related alterations in root development and rhizosphere chemistry, and (iii) the functional and structural diversity of rhizosphere microbial communities, on a P-deficient calcareous subsoil with and without soluble P fertilization. In both +P (80 mg P kg(-1)) and -P treatments (no added P), elevated CO(2) (800 micromol mol(-1)) increased shoot biomass production by 20 to 35% and accelerated the development of cluster roots, which exhibit important functions in chemical mobilization of sparingly soluble soil P sources. Accordingly, cluster root formation was stimulated in plants without P application by 140 and 60% for ambient and elevated CO(2) treatments, respectively. Intense accumulation of citrate and increased activities of acid and alkaline phosphatases, but also of chitinase, in the rhizosphere were mainly confined to later stages of cluster root development in -P treatments. Regardless of atmospheric CO(2) concentrations, there was no significant effect on accumulation of citrate or on selected enzyme activities of C, N, and P cycles in the rhizosphere of individual root clusters. Discriminant analysis of selected enzyme activities revealed that mainly phosphatase and chitinase contributed to the experimental variance (81.3%) of the data. Phosphatase and chitinase activities in the rhizosphere might be dominated by the secretion from cluster roots rather than by microbial activity. Alterations in rhizosphere bacterial communities analyzed by denaturing gradient gel electrophoresis (DGGE) were related with the intense changes in root secretory activity observed during cluster root development but not with elevated CO(2) concentrations.  相似文献   

6.
Elevated CO2 concentrations expected in the 21st century can stimulate plant growth and yield, whereas tropospheric O3 suppresses plant growth and yield in many areas of the world. Recent experiments showed that elevated CO2 often protects plants from O3 stress, but this has not been tested for many important crop species including snap bean (Phaseolus vulgaris L.). The objective of this study was to determine if elevated CO2 protects snap bean from O3 stress. An O3-tolerant cultivar (Tenderette) and an O3-sensitive selection (S156) were exposed from shortly after emergence to maturity to mixtures of CO2 and O3 in open-top field chambers. The two CO2 treatments were ambient and ambient with CO2 added for 24 h d(-1) resulting in seasonal 12 h d(-1) (0800-2000 h EST) mean concentrations of 366 and 697 microL L(-1), respectively. The two O3 treatments were charcoal-filtered air and nonfiltered air with O3 added for 12 h d(-1) to achieve seasonal 12 h d(-1) (0800-2000 h EST) mean concentrations of 23 and 72 nL L(-1), respectively. Elevated CO2 significantly stimulated growth and pod weight of Tenderette and S156, whereas elevated O3 significantly suppressed growth and pod weight of S156 but not of Tenderette. The suppressive effect of elevated O3 on pod dry weight of S156 was approximately 75% at ambient CO2 and approximately 60% at elevated CO2 (harvests combined). This amount of protection from O3 stress afforded by elevated CO2 was much less than reported for other crop species. Extreme sensitivity to O3 may be the reason elevated CO2 failed to significantly protect S156 from O3 stress.  相似文献   

7.
Song U  Mun S  Ho CH  Lee EJ 《Environmental management》2012,49(6):1238-1246
The possible consequences of global warming on plant communities and ecosystems have wide-ranging ramifications. We examined how environmental change affects plant growth as a function of the variations in the microclimate along an urban-suburban climate gradient for two allergy-inducing, invasive plants, Humulus japonicus and Ambrosia artemisiifolia var. elatior. The environmental factors and plant growth responses were measured at two urban sites (Gangbuk and Seongbuk) and two suburban sites (Goyang and Incheon) around Seoul, South Korea. The mean temperatures and CO(2) concentrations differed significantly between the urban (14.8 °C and 439 ppm CO(2)) and suburban (13.0 °C and 427 ppm CO(2)) sites. The soil moisture and nitrogen contents of the suburban sites were higher than those at the urban sites, especially for the Goyang site. The two invasive plants showed significantly higher biomasses and nitrogen contents at the two urban sites. We conducted experiments in a greenhouse to confirm the responses of the plants to increased temperatures, and we found consistently higher growth rates under conditions of higher temperatures. Because we controlled the other factors, the better performance of the two invasive plants appears to be primarily attributable to their responses to temperature. Our study demonstrates that even small temperature changes in the environment can confer significant competitive advantages to invasive species. As habitats become urbanized and warmer, these invasive plants should be able to displace native species, which will adversely affect people living in these areas.  相似文献   

8.
Intensive agriculture and increased N fertilizer use have contributed to elevated emissions of the greenhouse gases carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O). In this study, the exchange of CO(2), N(2)O, and CH(4) between a Quincy fine sand (mixed, mesic Xeric Torripsamments) soil and atmosphere was measured in a sweet corn (Zea mays L.)-sweet corn-potato (Solanum tuberosum L.) rotation during the 2005 and 2006 growing seasons under irrigation in eastern Washington. Gas samples were collected using static chambers installed in the second-year sweet corn and potato plots under conventional tillage or reduced tillage. Total emissions of CO(2)-C from sweet corn integrated over the season were 2071 and 1684 kg CO(2)-C ha(-1) for the 2005 and 2006 growing seasons, respectively. For the same period, CO(2) emissions from potato plots were 1571 and 1256 kg of CO(2)-C ha(-1). Cumulative CO(2) fluxes from sweet corn and potato fields were 17 and 13 times higher, respectively, than adjacent non-irrigated, native shrub steppe vegetation (NV). Nitrous oxide losses accounted for 0.5% (0.55 kg N ha(-1)) of the applied fertilizer (112 kg N ha(-1)) in corn and 0.3% (0.59 kg N ha(-1)) of the 224 kg N ha(-1) applied fertilizer. Sweet corn and potato plots, on average, absorbed 1.7 g CH(4)-C ha(-1) d(-1) and 2.3 g CH(4)-C ha(-1) d(-1), respectively. The global warming potential contributions from NV, corn, and potato fields were 459, 7843, and 6028 kg CO(2)-equivalents ha(-1), respectively, for the 2005 growing season and were 14% lower in 2006.  相似文献   

9.
Elevated atmospheric CO2 treatments stimulated biomass production in Fe-sufficient and Fe-deficient barley plants, both in hydroponics and in soil culture. Root/shoot biomass ratio was increased in severely Fe-deficient plants grown in hydroponics but not under moderate Fe limitation in soil culture. Significantly increased biomass production in high CO2 treatments, even under severe Fe deficiency in hydroponic culture, indicates an improved internal Fe utilization. Iron deficiency-induced secretion of PS in 0.5 to 2.5 cm sub-apical root zones was increased by 74% in response to elevated CO2 treatments of barley plants in hydroponics but no PS were detectable in root exudates collected from soil-grown plants. This may be attributed to suppression of PS release by internal Fe concentrations above the critical level for Fe deficiency, determined at final harvest for soil-grown barley plants, even without additional Fe supply. However, extremely low concentrations of easily plant-available Fe in the investigated soil and low Fe seed reserves suggest a contribution of PS-mediated Fe mobilization from sparingly soluble Fe sources to Fe acquisition of the soil-grown barley plants during the preceding culture period. Higher Fe contents in shoots (+52%) of plants grown in soil culture without Fe supply under elevated atmospheric CO2 concentrations may indicate an increased efficiency for Fe acquisition. No significant influence on diversity and function of rhizosphere-bacterial communities was detectable in the outer rhizosphere soil (0-3 mm distance from the root surface) by DGGE of 16S rRNA gene fragments and analysis of marker enzyme activities for C-, N-, and P-cycles.  相似文献   

10.
The positive impact of elevated atmospheric CO(2) concentration on crop biomass production suggests more carbon inputs to soil. Further study on the effect of elevated CO(2) on soil carbon and nitrogen dynamics is key to understanding the potential for long-term carbon storage in soil. Soil samples (0- to 5-, 5- to 10-, and 10- to 20-cm depths) were collected after 2 yr of grain sorghum [Sorghum bicolor (L.) Moench.] production under two atmospheric CO(2) levels: (370 [ambient] and 550 muL L(-1) [free-air CO(2) enrichment; FACE]) and two water treatments (ample water and limited water) on a Trix clay loam (fine, loamy, mixed [calcareous], hyperthermic Typic Torrifluvents) at Maricopa, AZ. In addition to assessing treatment effects on soil organic C and total N, potential C and N mineralization and C turnover were determined in a 60-d laboratory incubation study. After 2 yr of FACE, soil C and N were significantly increased at all soil depths. Water regime had no effect on these measures. Increased total N in the soil was associated with reduced N mineralization under FACE. Results indicated that potential C turnover was reduced under water deficit conditions at the top soil depth. Carbon turnover was not affected under FACE, implying that the observed increase in soil C with elevated CO(2) may be stable relative to ambient CO(2) conditions. Results suggest that, over the short-term, a small increase in soil C storage could occur under elevated atmospheric CO(2) conditions in sorghum production systems with differing water regimes.  相似文献   

11.
The boreal forest is subject to natural and anthropogenic disturbances, but the production of greenhouse gases as a result of flooding for hydroelectric power generation has received little attention. It was hypothesized that flooded soil would result in greater CO(2) and CH(4) emissions and carbon (C) fractionation compared with non-flooded soil. To evaluate this hypothesis, soil C and nitrogen (N) dynamics, CO(2) and CH(4) mean production rates, and (13)C fractionation in laboratory incubations at 14 and 21 degrees C under non-flooded and flooded conditions and its effect on labile and recalcitrant C sources were determined. A ferro-humic Podzol was collected at three different sites at the Experimental Lakes Area, Canada, with a high (19,834 g C m(-2)), medium (18,066 g C m(-2)), and low (11,060 g C m(-2)) soil organic C (SOC) stock. Soil organic C and total N stocks (g m(-2)) and concentrations (g kg(-1)) were significantly different (p < 0.05) among soil horizons within each of the three sites. Stable isotope analysis showed a significant enrichment in delta(13)C and delta(15)N with depth and an enrichment in delta(13)C and delta(15)N with decreasing SOC and N concentration. The mean CO(2) and CH(4) production rates were greatest in soil horizons with the highest SOC stock and were significantly higher at 21 degrees C and in flooded treatments. The delta(13)C of the evolved CO(2) (delta(13)C-CO(2)) became significantly enriched with time during decomposition, and the greatest degree of fractionation occurred in the organic Litter, Fungal, and Humic forest soil horizons and in soil with a high SOC stock compared with the mineral horizon and soil with a lower SOC stock. The delta(13)C-CO(2) was significantly depleted in flooded treatments compared with non-flooded treatments.  相似文献   

12.
The underlying mechanisms of interaction between the symbiotic nitrogen-fixation process and main physiological processes, such as assimilation, nutrient allocation, and structural growth, as well as effects of nitrogen fixation on plant responses to global change, are important and still open to more investigation. Appropriate models have not been adequately developed. A dynamic ecophysiological model was developed in this study for a legume plant [Glycine max (L.) Merr.] growing in northern China. The model synthesized symbiotic nitrogen fixation and the main physiological processes under variable atmospheric CO2 concentration and climatic conditions, and emphasized the interactive effects of these processes on seasonal biomass dynamics of the plant. Experimental measurements of ecophysiological quantities obtained in a CO2 enrichment experiment on soybean plants, were used to parameterize and validate the model. The results indicated that the model simulated the experiments with reasonable accuracy. The R2 values between simulations and observations are 0.94, 0.95, and 0.86 for total biomass, green biomass, and nodule biomass, respectively. The simulations for various combinations of atmospheric CO2 concentration, precipitation, and temperature, with or without nitrogen fixation, showed that increasing atmospheric CO2 concentration, precipitation, and efficiency of nitrogen fixation all have positive effects on biomass accumulation. On the other hand, an increased temperature induced lower rates of biomass accumulation under semi-arid conditions. In general, factors with positive effects on plant growth tended to promote each other in the simulation range, except the relationship between CO2 concentration and climatic factors. Because of the enhanced water use efficiency with a higher CO2 concentration, more significant effects of CO2 concentration were associated with a worse (dryer and warmer in this study) climate.  相似文献   

13.
镍的作物效应及临界值研究   总被引:11,自引:0,他引:11  
在三种紫色土(酸性,中性,石灰性)上添加Ni(0,10,30,60,100,200mg/kg土)进行莴笋盆栽试验,结果表明:低浓度的Ni能刺激作物生长,而高浓度的Ni则阻碍作物生长,使叶片黄化。三种土因性质及本身肥力水平的差异,使酸性紫色土上作物Ni最敏感,石灰性紫色土上次之,中性紫色土上最不敏感,且Ni在作物体内分配规律也有所不同,比较了土壤全Ni,有效Ni,植株根Ni作为的临界值的优越性,结果  相似文献   

14.
Emissions of carbon monoxide (CO) were observed from decomposing organic wastes and litter under laboratory, pilot composting plant, and natural conditions. Field studies included air from inside a compost heap of about 200 m3, emissions from composting of livestock wastes at a biologically operating farm, and leaf litter pile air samples. The concentration of CO was up to 120 micromol mol(-1) in the compost piles of green waste, and up to 10 micromol mol(-1) in flux chambers above livestock waste windrow composts. The mean CO flux rates were approximately 20 mg CO m(-2) h(-1) for compost heaps of green waste, and varied from 30 to 100 mg CO m(-2) h(-1) for fresh dung windrows. Laboratory studies using a temperature and ventilation-controlled substrate container were performed to elucidate the origin of CO, and included hay samples of fixed moisture content at temperatures between 5 and 65 degrees C, including nonsterilized as well as sterilized samples. The concentration of CO was up to 160 micromol mol(-1) in these experiments, and Arrhenius-type plot analyses resulted in activation energies of 65 kJ mol(-1) for thermochemically produced CO from the nonsterilized compost substrate. Sterilized samples showed dramatically reduced CO2 but virtually unchanged CO emissions, albeit at a slightly lower activation energy, likely a result of the high-temperature sterilization. Though globally and regionally these CO emissions are only a minor source, thermochemically produced CO emissions might affect local air quality in and near composting facilities.  相似文献   

15.
Methane (CH4) effluxes by paddy-culture rice (Oryza sativa L.) contribute about 16% of the total anthropogenic emissions. Since radiative forcing of CH4 at current atmospheric concentrations is 21 times greater on a per mole basis than that of carbon dioxide (CO2), it is imperative that the impact of global change on rice CH4 emissions be evaluated. Rice (cv. IR72) was planted in sunlit, closed-circulation, controlled-environment chambers in which CH4 efflux densities were measured daily. The CO2 concentration was maintained at either 330 or 660 micromol mol(-1). Air temperatures were controlled to daily maxima and minima of 32/23, 35/26, and 38/29 degrees C at each CO2 treatment. Emissions of CH4 each day were determined during a 4-h period after venting and resealing the chambers at 0800 h. Diurnal CH4 effluxes on 77, 98, and 119 d after planting (DAP) were obtained similarly at 4-h intervals. Emissions over four-plant hills and over flooded bare soil were measured at 53, 63, and 100 DAP. Emissions were negligible before 40 DAP. Thereafter, emissions were observed first in high-CO2, high-temperature treatments and reached a sustained maximum efflux density of about 7 mg m(-2) h(-1) (0.17 g m(-2) d(-1)) near the end of the growing season. Total seasonal CH4 emission was fourfold greater for high-CO2, high-temperature treatments than for the low-CO2, low-temperature treatment, probably due to more root sloughing or exudates, since about sixfold more acetate was found in the soil at 71 DAP. Both rising CO2 and increasing temperatures could lead to a positive feedback on global warming by increasing the emissions of CH4 from rice.  相似文献   

16.
Carbon and N losses reduce the agronomic value of compost and contribute to greenhouse gas (GHG) emissions. This study investigated GHG emissions during composting of straw-bedded manure (SBM) and wood chip-bedded manure (WBM). For SBM, dry matter (DM) loss was 301 kg Mg(-1), total carbon (TC) loss was 174 kg Mg(-1), and total nitrogen (TN) loss was 8.3 kg Mg(-1). These correspond to 30.1% of initial DM, 52.8% of initial TC, and 41.6% of initial TN. For WBM, DM loss was 268 kg Mg(-1), TC loss was 154 kg Mg(-1), and TN loss was 1.40 kg Mg(-1), corresponding to 26.5, 34.5, and 11.8% of initial amounts. Most C was lost as CO2 with CH4 accounting for <6%. However, the net contribution to greenhouse gas emissions was greater for CH4 since it is 21 times more effective at trapping heat than CO2. Nitrous oxide (N2O) emissions were 0.077 kg N Mg(-1) for SBM and 0.084 kg N Mg(-1) for WBM, accounting for 1 to 6% of total N loss. Total GHG emissions as CO2-C equivalent were not significantly different between SBM (368.4 +/- 18.5 kg Mg(-1)) and WBM (349.2 +/- 24.3 kg Mg(-1)). However, emission of 368.4 kg C Mg(-1) (CO2-C equivalent) was greater than the initial TC content (330.5 kg Mg(-1)) of SBM, raising the question of the net benefits of composting on C sequestration. Further study is needed to evaluate the impact of composting on overall GHG emissions and C sequestration and to fully investigate livestock manure management options.  相似文献   

17.
Increased CO2 release from soils resulting from agricultural practices such as tillage has generated concerns about contributions to global warming. Maintaining current levels of soil C and/or sequestering additional C in soils are important mechanisms to reduce CO2 in the atmosphere through production agriculture. We conducted a study in northern Alabama from 2003 to 2006 to measure CO2 efflux and C storage in long-term tilled and non-tilled cotton (Gossypium hirsutum L.) plots receiving poultry litter or ammonium nitrate (AN). Treatments were established in 1996 on a Decatur silt loam (clayey, kaolinitic thermic, Typic Paleudults) and consisted of conventional-tillage (CT), mulch-tillage (MT), and no-tillage (NT) systems with winter rye [Secale cereale (L.)] cover cropping and AN and poultry litter (PL) as nitrogen sources. Cotton was planted in 2003, 2004, and 2006. Corn was planted in 2005 as a rotation crop using a no-till planter in all plots, and no fertilizer was applied. Poultry litter application resulted in higher CO2 emission from soil compared with AN application regardless of tillage system. In 2003 and 2006, CT (4.39 and 3.40 micromol m(-2) s(-1), respectively) and MT (4.17 and 3.39 micromol m(-2) s(-1), respectively) with PL at 100 kg N ha(-1) (100 PLN) recorded significantly higher CO2 efflux compared with NT with 100 PLN (2.84 and 2.47 micromol m(-2) s(-1), respectively). Total soil C at 0- to 15-cm depth was not affected by tillage but significantly increased with PL application and winter rye cover cropping. In general, cotton produced with NT conservation tillage in conjunction with PL and winter rye cover cropping reduced CO2 emissions and sequestered more soil C compared with control treatments.  相似文献   

18.
Seedling biomass and allocation, transpiration water use efficiency (TWUE), and species competition between switchgrass (Panicum virgatum L.) and milkvetch (Astragalus adsurgens Pall.) were investigated in a pot-cultivated experiment under different levels of water availability. The experiment was conducted using a simple replacement design in which switchgrass and milkvetch were grown in growth chamber with ten seedlings per pot, in three combinations of the two species (0:10, 5:5 and 10:0). Five water treatments included sufficient water supply (HW), gradual soil drying from HW (DHW), moderate water stress (LW), gradual soil drying from LW (DLW), and re-establishment of LW conditions after 12 days of drying from LW (RLW). Water treatments were applied over a 15-day period. Biomass production and its partitioning, and TWUE were determined at the end of the experiment. Species competitive indices (competitive ratio (CR), aggressivity (A) and relative yield total (RYT)) were calculated from the biomass dry weight data for shoots, roots and total biomass. Water stress significantly reduced seedling biomass production but increased root:shoot ratios in both monocultures and mixtures. In the RLW treatment, only switchgrass monocultures displayed compensatory biomass production and TWUE, while both species demonstrated compensatory growth in the mixture. Switchgrass was the dominant species and much more aggressive than milkvetch in the LW treatment, while in the other four treatments milkvetch was the dominant species as measured by the positive value of aggressivity and higher values of CR. The total biomass RYT values of the two species were higher than 1.0, indicating some degree of resource complimentarity. In the two-species mixture, although the biomass production was lower than that of milkvetch in the monoculture, there was better TWUE, especially under low and fluctuating water availability.  相似文献   

19.
Loss of soil nutrients in runoff accelerates eutrophication of surface waters. This study evaluated P and N in surface runoff in relation to rainfall intensity and hydrology for two soils along a single hillslope. Experiments were initiated on 1- by 2-m plots at foot-slope (6%) and mid-slope (30%) positions within an alfalfa (Medicago sativa L.)-orchardgrass (Dactylis glomerata L.) field. Rain simulations (2.9 and 7.0 cm h(-1)) were conducted under wet (spring) and dry (late-summer) conditions. Elevated, antecedent soil moisture at the foot-slope during the spring resulted in less rain required to generate runoff and greater runoff volumes, compared with runoff from the well-drained mid-slope in spring and at both landscape positions in late summer. Phosphorus in runoff was primarily in dissolved reactive form (DRP averaged 71% of total P), with DRP concentrations from the two soils corresponding with soil test P levels. Nitrogen in runoff was mainly nitrate (NO3-N averaged 77% of total N). Site hydrology, not chemistry, was primarily responsible for variations in mass N and P losses with landscape position. Larger runoff volumes from the foot-slope produced higher losses of total P (0.08 kg ha(-1)) and N (1.35 kg ha(-1)) than did runoff from the mid-slope (0.05 total P kg ha(-1); 0.48 kg N ha(-1)), particularly under wet, spring-time conditions. Nutrient losses were significantly greater under the high intensity rainfall due to larger runoff volumes. Results affirm the critical source area concept for both N and P: both nutrient availability and hydrology in combination control nutrient loss.  相似文献   

20.
Microbial respiration in peat and overlying plant litter, as influenced by water level and phosphorus enrichment, was evaluated for an Everglades (Florida, USA) marsh ecosystem by measuring CO2 and CH4 release from soil-water microcosms. Intact cores of peat, overlying plant litter, and surface water were collected at seven locations in cattail (Typha domingensis Pers.) and sawgrass (Cladium jamaicense Crantz) stands along a phosphorus (P) enrichment gradient in Water Conservation Area 2A (WCA-2A). Each soil-water microcosm was outfitted with a controlled air circulation system whereby outflow gas from the headspace could be analyzed for CO2 and CH4 to determine flux of C from the soil-water column to the atmosphere. Gaseous C flux was determined for flooded conditions (10-cm water depth) and for water levels of 0, 5, 10, and 15 cm below the peat surface. Overall, decreasing water level resulted in significantly increased C flux, although rates were significantly higher under flooded conditions than under nonflooded, saturated-soil conditions, presumably due to O2 availability associated with algal photosynthesis within the litter layer in the water column. Carbon flux decreased significantly for sites increasingly distant from the primary hydrologic and nutrient inflows to WCA-2A. The microcosm study demonstrated that the C turnover rate was significantly increased by accelerated nutrient loading to the marsh, and was further enhanced by decreasing water level under drained conditions. Our results also demonstrated that photosynthesis within the water column is a potentially important regulator of C mineralization rate in the litter layer of the marsh system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号