共查询到20条相似文献,搜索用时 15 毫秒
1.
改性水生植物生物炭对低浓度硝态氮的吸附特性 总被引:2,自引:0,他引:2
为有效去除富营养化水体中硝态氮,以再力花(Thalia dealbata)、香蒲(Typha orientalis)和芦苇(Phragmites australis)3种水生植物为原材料制备生物炭,并采用氯化铁改性后进行吸附试验,探索改性水生植物生物炭对水体中低浓度硝态氮的吸附效果。结果表明:铁改性水生植物生物炭表面负载了大量Fe3+形成Fe—O基团,大幅提升了其对硝态氮的吸附性能,其中铁改性香蒲生物炭平衡吸附量最大,达到1.747 mg·g~(-1)。3种改性水生植物生物炭对低浓度硝态氮的吸附符合准二级动力学和Freundlich模型,吸附主要为生物炭表面非均一多分子层化学吸附。溶液初始pH值在3.0~9.0范围内对铁改性水生植物生物炭吸附硝态氮能力影响较小,吸附最适合pH为中性。因此,铁改性水生植物生物炭能有效去除水体中低浓度硝态氮,同时实现了水生植物资源化,具有良好的应用前景。 相似文献
2.
以动植物来源(鸡粪便和小麦秸秆)的生物质为原料,在350和650℃条件下慢速热解制备生物炭并表征其理化性质,采用批量吸附试验研究不同吸附时间、溶液pH值和Cd~(2+)浓度条件下生物炭对Cd~(2+)的吸附特性。结果表明,随着热解温度升高,生物炭的pH值和灰分含量升高,芳香性和疏水性增强,极性减弱。相同热解温度条件下,动物来源的鸡粪炭pH值和灰分含量比植物来源的小麦秸秆炭高,芳香结构更完备。生物炭对Cd~(2+)的吸附动力学过程均符合准二级动力学模型(R20.99),吸附在12 h时达到平衡,吸附过程均由外部液膜扩散、表面吸附和颗粒内扩散共同控制,且后者是主要限速步骤。随着溶液pH值的升高(2.0~6.0),生物炭对Cd~(2+)的吸附量均逐渐增加。Langmuir模型能很好地描述植物来源的小麦秸秆炭对Cd~(2+)的吸附行为(R2为0.970 3~0.981 5),Freundlich模型更适用于动物来源的鸡粪炭(R2为0.971 7~0.976 9),动物来源的鸡粪炭对Cd~(2+)的吸附效果优于植物来源的小麦秸秆炭。阳离子-π作用和沉淀作用是650℃生物炭吸附Cd~(2+)的主要机制。 相似文献
3.
4.
5.
不同改性生物炭功能结构特征及其对铵氮吸附的影响 总被引:4,自引:0,他引:4
为研发高性能铵氮(NH_4~+-N)吸附材料,削减水体NH_4~+-N排放负荷,提高农田土壤NH_4~+-N养分持留力,采用3种改性方法制备铁改性生物炭(B1)、酸碱联合改性生物炭(B2)铁氧化改性生物炭(B3)。通过吸附实验对比研究不同改性生物炭对NH_4~+-N的吸附效应,并结合改性前后和吸附前后生物炭组成与结构特征对改性生物炭的NH_4~+-N吸附机制进行探讨。结果表明,(1)铁氧化改性生物炭对NH_4~+-N的吸附作用最强,相对于未改性生物炭(B),其NH_4~+-N饱和吸附量提高了23.3%-24.1%;铁改性生物炭次之,NH_4~+-N饱和吸附量较未改性炭提高了14.1%-14.3%;酸碱联合改性生物炭NH_4~+-N饱和吸附量最小。(2)改性生物炭对NH_4~+-N的吸附由单分子层化学吸附的稳定吸附机制主导,同时存在非均一的多层物理吸附过程。(3)改性后导致的C-O官能团的增加是NH_4~+-N吸附量增加的主要原因,其次Fe-O官能团也参与了NH_4~+-N吸附。因此,采用氧化物对生物炭进行改性,提升生物炭中有氧官能团含量(包括有机和无机有氧官能团)是提高NH_4~+-N吸附效应的有效途径。该研究结果可为制备和筛选高性能NH_4~+-N吸附材料,提高生物炭在土水系统NH_4~+-N的去除效应提供理论基础。 相似文献
6.
镁改性芦苇生物炭对水环境中磷酸盐的吸附特性 总被引:1,自引:0,他引:1
《生态环境学报》2020,(6)
为了实现湿地水生植物资源化利用,加强对水环境中磷污染的控制,以中国东北地区湿地典型水生植物芦苇(Phragmitesaustralis)为生物质材料,在700℃条件下制备成生物炭,用六水合氯化镁作为改性剂对生物炭进行改性,通过SEM和能谱分析对芦苇生物炭改性前后进行表征,发现未改性的芦苇生物炭的电镜呈明显的孔隙结构,孔壁薄,孔隙排列有序,Mg元素含量仅为0.17%;而镁改性芦苇生物炭的孔隙负载了一些针状结构,且Mg元素的含量达到5.04%。说明镁离子成功负载在生物炭的表面。通过SEM、EDS、FTIR、XRD等技术对镁改性芦苇生物炭吸附磷酸盐前后进行表征,发现磷酸盐主要以Mg HPO_4和Mg_3(PO_4)_2的形态吸附在镁改性生物炭上。吸附动力学实验结果表明,镁改性生物炭对磷酸盐的吸附过程符合准二级动力学模型,吸附机理是由物理吸附和化学吸附共同作用的。通过颗粒内扩散模型的分析发现吸附速率由表面吸附、液膜扩散和颗粒内扩散等共同决定。镁改性生物炭对磷酸盐的吸附热力学可以用Langmuir方程描述(R~2=0.938 6),表明该吸附行为主要是单分子层吸附。共存离子实验表明,HCO_3~-和CO_3~(2-)能明显抑制镁改性生物炭对磷酸盐的吸附。经过3次解吸,镁改性生物炭吸附后的磷可全部释放。当温度为308 K,改性剂浓度为2 mol·L~(-1),改性生物炭投加量为2.0 g·L~(-1),p H为7.0时,吸附效果最佳,吸附量可达到2.37 mg·g~(-1)。 相似文献
7.
原状生物炭对废水中污染物的去除效果有限,改性是提高其吸附能力的重要途径.本文以水稻秸秆为对象,尿素为改性剂,在700℃无氧热解条件下分别制备了原状秸秆生物炭(RSBC)和氮改性秸秆生物炭(N-RSBC),采用扫描电子显微镜(SEM)、比表面积分析仪(BET)、元素分析仪(EA)、Zeta电位、X射线衍射(XRD)、傅里叶红外光谱(FTIR)以及X射线光电子能谱(XPS)对RSBC和N-RSBC的形貌、比表面积、元素组成、矿物类型和官能团进行表征,考察溶液初始pH值、离子类型和离子强度对生物炭吸附Cu2+的影响,并结合吸附等温线和吸附动力学实验、吸附后表征结果探究生物炭对废水中Cu2+的吸附性能和机理.结果表明,氮改性导致了生物炭的比表面积和孔体积的降低,而生物炭的官能团类型却更加丰富,特别是含氮官能团.当溶液初始pH值从2.0增加到6.0,生物炭对于Cu2+的去除率逐渐增加.对RSBC而言,Na+、K+、Ca2+、Mg2+的存在能略微增加其对Cu... 相似文献
8.
9.
改性豆饼生物质炭对铅的吸附特性 总被引:1,自引:0,他引:1
以豆饼为前驱体制备生物炭,并对其进行KOH刻蚀改性,利用场发射扫描电子显微镜(SEM)、比表面积及孔径分析仪(BET)、X-ray能谱仪(EDS)、多晶X射线衍射仪(XRD)和傅里叶变换红外光谱仪(FTIR)等对豆饼生物炭(SYB)和改性豆饼生物炭(SYBK)进行表征,比较SYB和SYBK对Pb~(2+)的吸附性能,并研究时间、Pb~(2+)溶液初始浓度和pH对吸附效果的影响规律。结果表明,SYBK含有更丰富的官能团,且比表面积大大增加,SYB和SYBK对Pb~(2+)的等温吸附曲线均符合Langmuir吸附模型,SYBK对Pb~(2+)的实际最大吸附量达711.0 mg·g~(-1),明显高于SYB(293.0 mg·g~(-1))。对比SYB和SYBK的XRD谱图可知,吸附过程中SYB和SYBK表面形成了碱式碳酸铅沉淀,且吸附后溶液中含有大量矿物阳离子Ca~(2+)、Mg~(2+)等。上述结果可为高效吸附环境中Pb的生物炭的修饰或改性方法的研究提供参考。 相似文献
10.
为提高生物炭对水中Cd2+的吸附去除性能,以BC1和BC22种稻壳生物炭为基础材料,分别采用NaOH和FeCl3溶液制备得到NBC1和NBC2以及FBC1和FBC2改性稻壳生物炭,并通过吸附动力学和等温吸附实验研究6种生物炭对水中Cd2+的吸附性能.结果表明,对于50 mg·L-1 Cd2+溶液,当生物炭投加量为1 g... 相似文献
11.
12.
芦苇生物炭对水中铅的吸附特性 总被引:1,自引:0,他引:1
《环境化学》2017,(9)
将芦苇秸秆在500℃下缺氧热解4 h制备成生物炭.采用批量平衡实验法,考察溶液p H值、生物炭投加量、溶液离子强度以及生物炭灰分对芦苇生物炭吸附水中Pb~(2+)的影响.结果表明:溶液p H值在2.0—5.5范围内,芦苇生物炭对Pb~(2+)的吸附量随着p H值升高而增加;生物炭最佳投加量为1.8 g·L-1,Pb~(2+)的去除率为96.6%;溶液中Na~+、Ca~(2+)的存在会抑制芦苇生物炭对Pb~(2+)的吸附;去除灰分后的生物炭对Pb~(2+)的吸附量降低.不同温度下的吸附等温线更符合Langmiur方程.在283、298、313 K下的最大实际吸附量分别为21.89、24.06、24.95 mg·g~(-1).热力学研究结果为ΔGθ0、ΔHθ0和ΔSθ0,说明该吸附是自发、熵增的吸热过程.吸附动力学线性拟合结果更符合假二级动力学方程.芦苇生物炭吸附前后的红外光谱和XRD衍射谱图分析表明吸附过程存在离子交换和阳离子-π作用.去除灰分的生物炭吸附Pb~(2+)后溶液中Na~+、K~+、Ca~(2+)、Mg~(2+)浓度升高,表明离子交换是主要吸附机制. 相似文献
13.
为了实现农业秸秆废弃物的资源化利用,加强对生态环境中多环芳烃污染的控制,选取农业废弃物向日葵(Helianthus annuus)秸秆为原料,在不同温度条件下(300、500、700℃)烧制生物炭(BC300、BC500、BC700),同时在500℃条件下制备KOH改性生物炭(A-BC500),采用元素分析仪、比表面积分析仪、扫描电子显微镜、X射线衍射仪和傅里叶红外光谱仪分别对其元素组成、比表面积、表观形貌、物相结构和官能团组成进行表征,并采用动力学吸附实验和等温吸附实验研究不同生物炭对多环芳烃菲的吸附性能。结果表明,炭化温度及碱改性均会影响生物炭的元素组成,进而改变其芳香性、亲水性和极性。向日葵秸秆生物炭的炭质骨架结构随着炭化温度升高而逐步发生变形和坍塌;与BC500相比,A-BC500的表面结构粗糙程度增加且比表面积增加至529.14 m2·g-1。生物炭对菲的动力学吸附曲线符合准二级动力学模型(R2>0.99),较BC500、A-BC500对菲的平衡吸附量提高了12%,且准二级动力学吸附速率常数提高了约2.3... 相似文献
14.
HDTMAB改性粉煤灰对水体中磷的吸附特性 总被引:1,自引:0,他引:1
制备了十六烷基三甲基溴化铵(HDTMAB)改性粉煤灰,研究了该改性粉煤灰对水体中磷的吸附特性,结果表明:①当HDTMAB负载量为10%时,改性粉煤灰吸附磷酸盐的效果最佳;②改性粉煤灰对磷酸盐的吸附速度很快,20min可达吸附平衡;③改性粉煤灰对磷酸盐的吸附行为能较好地符合Langmuir等温吸附模型和Freundlich等温吸附模型,但在Freundlich模式下表现为两个线性区;④pH对改性粉煤灰吸附磷酸盐的性能有显著影响,随着pH的升高对磷酸盐的吸附能力逐渐增加。 相似文献
15.
微塑料自生的毒性和富集作用会极大地危害生物健康.不同原材料,生物炭结构组成不同,吸附特性也不一样.探究不同类型生物炭对微塑料的吸附性能及吸附机理,有助于为生物炭吸附去除水体中微塑料的材料选择提供理论依据.本研究使用3种有机废弃物制备成的生物炭(污泥炭,秸秆炭,梧桐皮炭)对微塑料PET(6.5 μm)进行吸附试验,通过比... 相似文献
16.
《环境化学》2017,(4)
以玉米芯为原料制备玉米芯生物炭(CCBC),探讨其对水中对硝基苯酚(PNP)的吸附特性,同时运用扫描电镜、傅里叶红外光谱、比表面积仪和元素分析对生物炭的理化性质进行表征,考察了溶液pH值和生物炭投加量对CCBC吸附PNP的影响.结果表明,在溶液pH值在2.0—11.0范围内,随着溶液pH值的升高,CCBC对PNP的吸附量持续减小,最佳溶液pH值应在2.0—7.0范围内.CCBC对PNP的吸附在4 h时达到平衡,Elovich模型可以很好地拟合动力学数据,且颗粒内扩散不是唯一的控速步骤.吸附等温线符合Sips模型(R~20.98),最大吸附量为64.11 mg·g~(-1).热力学结果表明,CCBC对PNP的吸附是一个自发的吸热过程.PNP在CCBC上的吸附机制包括分配作用和表面吸附作用,且以表面吸附作用为主. 相似文献
17.
施氮对植物生长、硝态氮累积及土壤硝态氮残留的影响 总被引:14,自引:2,他引:14
施用N肥可提高叶类蔬菜的产量,但施用过量也会造成土壤N污染。为了研究当年施肥量对作物硝态氮累积及土壤无机氮残留量的影响,采用土壤盆栽试验,研究了5个施氮水平下3种叶类蔬菜(油菜、小白菜、菠菜)的生长、硝态氮累积和土壤硝态氮残留的变化。结果表明,施氮过高抑制了植物的生长,其中对菠菜的抑制作用最强。3种蔬菜硝态氮累积对施N的反应不同,油菜在施N0.40g时硝态氮含量达到最高,为N1742.2μg·g-1FW;小白菜在0.60g最高,为N1635.6μg·g-1FW;而菠菜则在0.80g最高,为N865.2μg·g-1FW。施N量与土壤硝态氮残留量之间呈显著正相关关系,说明施氮量越高土壤中硝态氮的残余就越大,对土壤的污染就越严重。 相似文献
18.
不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性能 总被引:1,自引:0,他引:1
以菌糠废弃物为原料,采用限氧裂解法在500℃条件下制备香菇菌糠、猴头菇菌糠和平菇菌糠生物炭(LEBC、HEBC和POBC).利用SEM、XRD和FTIR等方法对吸附剂进行了表征;通过吸附动力学、等温吸附、生物炭酸化实验探究了3种菌糠生物炭去除水溶液中Cu~(2+)、Cd~(2+)的效果及机理.结果表明,在溶液初始pH 2—3时,3种菌糠生物炭对溶液中Cu~(2+)、Cd~(2+)的吸附量急剧增加.LEBC、HEBC、POBC对Cu~(2+)、Cd~(2+)的吸附符合准二级动力学模型,对Cu~(2+)的吸附速率分别为10.15×10~(-3)、7.08×10~(-3)、0.69×10~(-3) mg·g~(-1)·min~(-1),对Cd~(2+)的吸附速率分别为6.53×10~(-3)、5.19×10~(-3)、0.26×10~(-3) mg·g~(-1)·min~(-1).不同浓度下LEBC、HEBC、POBC对Cu~(2+)的吸附符合Langmuir模型,最大吸附量依次为56.74、11.98、77.32 mg·g~(-1);而Cd~(2+)的吸附符合Freundlich模型,最大吸附量依次为74.26、36.49、70.2 mg·g~(-1).LEBC在较短的时间内能达到较大的吸附量,可作为去除水体中Cu~(2+)、Cd~(2+)的优质吸附剂.XRD和FTIR等分析结果表明生物炭对Cu~(2+)、Cd~(2+)的吸附机制包括物理吸附、阳离子-π作用、官能团络合及沉淀.3种生物炭经酸化处理后,对Cu~(2+)、Cd~(2+)的吸附能力显著下降,表明生物炭中碳酸盐引起的Cu~(2+)、Cd~(2+)表面沉淀在吸附过程中起重要作用. 相似文献