首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
芦苇生物炭对水中铅的吸附特性   总被引:1,自引:0,他引:1  
将芦苇秸秆在500℃下缺氧热解4 h制备成生物炭.采用批量平衡实验法,考察溶液p H值、生物炭投加量、溶液离子强度以及生物炭灰分对芦苇生物炭吸附水中Pb~(2+)的影响.结果表明:溶液p H值在2.0—5.5范围内,芦苇生物炭对Pb~(2+)的吸附量随着p H值升高而增加;生物炭最佳投加量为1.8 g·L-1,Pb~(2+)的去除率为96.6%;溶液中Na~+、Ca~(2+)的存在会抑制芦苇生物炭对Pb~(2+)的吸附;去除灰分后的生物炭对Pb~(2+)的吸附量降低.不同温度下的吸附等温线更符合Langmiur方程.在283、298、313 K下的最大实际吸附量分别为21.89、24.06、24.95 mg·g~(-1).热力学研究结果为ΔGθ0、ΔHθ0和ΔSθ0,说明该吸附是自发、熵增的吸热过程.吸附动力学线性拟合结果更符合假二级动力学方程.芦苇生物炭吸附前后的红外光谱和XRD衍射谱图分析表明吸附过程存在离子交换和阳离子-π作用.去除灰分的生物炭吸附Pb~(2+)后溶液中Na~+、K~+、Ca~(2+)、Mg~(2+)浓度升高,表明离子交换是主要吸附机制.  相似文献   

2.
农林废弃物基生物炭对重金属铅和镉的吸附特性   总被引:2,自引:0,他引:2  
以沙柳、水稻和玉米秸秆3种农林废弃物为原材料,于500℃条件下热解制备生物炭,并通过元素分析、比表面积分析仪、扫描电镜(SEM)和红外光谱(FTIR)等分析方法对所制备的生物炭进行表征。探究了溶液初始pH、干扰离子强度和初始吸附剂投加量等因素对3种生物炭吸附Pb~(2+)和Cd~(2+)作用的影响,讨论了吸附动力学特性及吸附等温特性。结果表明:不同生物质制备出的3种生物炭的碱性和灰分含量由高到低依次为沙柳秸秆生物炭(SWB)、玉米秸秆生物炭(CB)和水稻秸秆生物炭(SB),FTIR检测结果显示3种生物炭表面均含有大量含氧官能团;当溶液pH为3~6时,3种生物炭对Pb~(2+)和Cd~(2+)吸附量随pH值的增加而升高,对Pb~(2+)的吸附效果随着溶液中离子强度的增强而降低,而SWB对Cd~(2+)的吸附效果随离子强度的增加而增加;3种生物炭对Pb~(2+)和Cd~(2+)的吸附过程符合准二级动力学模型,R~2均大于0.99,表明生物炭吸附速率主要由化学吸附机制决定;SWB、SB和CB对Cd~(2+)的吸附过程既符合Langmuir模型,又符合Freundlich模型,而生物炭对Pb~(2+)的吸附过程更适合Langmuir等温模型,表明生物炭对Pb~(2+)的吸附近似单分子层吸附,而对Cd~(2+)的吸附存在多分子层吸附。  相似文献   

3.
不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性能   总被引:1,自引:0,他引:1  
以菌糠废弃物为原料,采用限氧裂解法在500℃条件下制备香菇菌糠、猴头菇菌糠和平菇菌糠生物炭(LEBC、HEBC和POBC).利用SEM、XRD和FTIR等方法对吸附剂进行了表征;通过吸附动力学、等温吸附、生物炭酸化实验探究了3种菌糠生物炭去除水溶液中Cu~(2+)、Cd~(2+)的效果及机理.结果表明,在溶液初始pH 2—3时,3种菌糠生物炭对溶液中Cu~(2+)、Cd~(2+)的吸附量急剧增加.LEBC、HEBC、POBC对Cu~(2+)、Cd~(2+)的吸附符合准二级动力学模型,对Cu~(2+)的吸附速率分别为10.15×10~(-3)、7.08×10~(-3)、0.69×10~(-3) mg·g~(-1)·min~(-1),对Cd~(2+)的吸附速率分别为6.53×10~(-3)、5.19×10~(-3)、0.26×10~(-3) mg·g~(-1)·min~(-1).不同浓度下LEBC、HEBC、POBC对Cu~(2+)的吸附符合Langmuir模型,最大吸附量依次为56.74、11.98、77.32 mg·g~(-1);而Cd~(2+)的吸附符合Freundlich模型,最大吸附量依次为74.26、36.49、70.2 mg·g~(-1).LEBC在较短的时间内能达到较大的吸附量,可作为去除水体中Cu~(2+)、Cd~(2+)的优质吸附剂.XRD和FTIR等分析结果表明生物炭对Cu~(2+)、Cd~(2+)的吸附机制包括物理吸附、阳离子-π作用、官能团络合及沉淀.3种生物炭经酸化处理后,对Cu~(2+)、Cd~(2+)的吸附能力显著下降,表明生物炭中碳酸盐引起的Cu~(2+)、Cd~(2+)表面沉淀在吸附过程中起重要作用.  相似文献   

4.
以NH_4H_2PO_4、Ca(NO_3)_2·4H_2O、Sr(NO_3)_2和尿素[CO(NH_2)_2]为原材料,通过水热法合成了一种单分散、由纳米片自组装而成的绣球花状三维(3-D)掺锶碳羟基磷灰石(Sr-CHAp),并用于吸附酸性水溶液中的铅离子(Pb~(2+)).研究了溶液p H、吸附时间、初始浓度对Sr-CHAp材料吸附Pb~(2+)的影响及在其在不同p H条件下的吸附机理.采用XRD、SEM、FI-IR和BET等技术对材料及吸附产物进行表征.结果表明,该吸附剂材料表面具有介孔结构,平均孔隙宽度是11.10 nm,具有较大的比表面积(43.54 m~2·g~(-1)),在pH3时对Pb~(2+)具有较高的饱和吸附量(985.1 mg·g~(-1));其等温线吸附数据符合Langmuir模型,动力学吸附数据符合伪二级动力学模型;在酸性溶液中其对Pb~(2+)的吸附主要表现为溶解/沉淀机理,溶液p H值的大小影响吸附后的产物,强酸性条件下有利于PbHPO_4的生成,而p H值为3—6时主要生成Pb_(10)(PO_4)_6(OH)_2.  相似文献   

5.
农业废弃物资源化利用和无害化处理是实现农业可持续发展和发展循环经济的有效途径,对薏仁米(Semen Coicis)秸秆制备生物炭吸附剂,实现有机固体废弃物资源化利用,解决重金属废水处理难题,以薏仁米秸秆为原料,采用快速热解法制备生物炭。为探明不同温度下制备的薏仁米秸秆生物炭对重金属Hg~(2+)的去除机制及机理,并用扫描电子镜-能谱分析法(SEM-EDS)、傅立叶变换红外光谱法(FT-IR)、氮吸附法(BET)、X射线光电子能谱法(XPS)脱附对制备的生物炭进行了表征,研究其对水中Hg~(2+)的吸附特性及机制。通过结果表明,随裂解温度的升高,生物炭的孔径尺寸逐渐增大,表面极性官能团逐渐减少,比表面积、孔隙容积呈现先增加后减小的趋势。薏仁米秸秆生物炭具有丰富的蜂窝状孔结构和-COOH、-OH等表面活性基团。生物炭对质量浓度小于100 mg·L~(-1)溶液中Hg~(2+)的去除率大于92%,且生物炭对Hg~(2+)的去除率主要发生在前1 h吸附时间内,然后趋于平衡;随添加量的增加,生物炭对Hg~(2+)去除效率呈现先增加后减小的趋势,含量为2 g·L~(-1)时生物炭对水中Hg~(2+)的去除效率最高,且700℃制备的生物炭对Hg~(2+)的去除效率最高,最大吸附量可达235.3mg·g~(-1)。吸附平衡等温线和吸附动力学结果表明,薏仁米秸秆生物炭对Hg~(2+)的吸附过程符合Langmuir等温吸附模型和准二级动力学吸附模型,其对Hg~(2+)的吸附为单层吸附;结合X射线光电子能谱和立叶变换红外光谱,吸附作用机制主要以共沉淀和表面络合为主,Hg-π非共价相互作用为辅的形式结合机理。  相似文献   

6.
王家宏  雷思莉 《环境化学》2019,38(8):1785-1792
利用水热法制备出Fe_3O_4磁性粒子,通过正硅酸乙酯水解使Fe_3O_4外面包覆SiO_2(Fe_3O_4@SiO_2),最后利用3-氨丙基三甲氧基硅烷和氯磺酸进行改性,合成了磺酸基改性磁性吸附剂.采用FT-IR、BET和XRD等方法对合成吸附剂进行表征,并探讨接触时间、初始浓度、溶液pH值等因素对吸附性能的影响.表征结果显示,成功合成了磺酸基改性磁性Fe_3O_4@SiO_2粒子;Fe_3O_4@SO_3Na比表面积为20.4587 m~(-2)·g~(-1).吸附实验结果显示,在25℃条件下,Fe_3O_4@SO_3Na对Cu~(2+)的吸附等温线符合Freundlich吸附等温方程,实验条件下最大吸附量为16.13 mg·g~(-1).Fe_3O_4@SO_3Na吸附Cu~(2+)可在1 h内达到吸附平衡且吸附动力学遵循拟二级动力学模型.溶液中存在盐离子时,发现盐离子的存在对吸附效果几乎没有影响;溶液中含有柠檬酸时对吸附效果产生抑制.吸附剂经3次循环使用后仍有吸附性能,表明吸附剂具有良好的再生性和经济性.  相似文献   

7.
2种改性生物炭对水体硝态氮的吸附特性   总被引:1,自引:0,他引:1  
以2种水生植物香蒲(Typha angustifolia)和芦苇(Phragmites communis)制备的FeCl_3改性生物炭为吸附剂,硝酸钾溶液为吸附质,研究生物炭对水体硝态氮的去除。研究了2种改性生物炭的吸附动力学与吸附等温线特性,结合红外光谱分析(IR)、扫描电镜分析(SEM)和元素分析对2种改性与未改性生物炭进行表征,并探究生物炭投加量、吸附时间、吸附质初始浓度、吸附质pH值等因素对2种改性生物炭吸附硝态氮的影响。结果表明,2种改性生物炭对硝态氮的吸附均符合伪二级吸附动力学方程。FeCl_3改性香蒲生物炭(XP-Fe)和FeCl_3改性芦苇生物炭(LW-Fe)的最大吸附量qm分别为15.55和10.63 mg·g~(-1)。吸附质pH值降低,有利于XP-Fe和LW-Fe对硝态氮的去除。XP-Fe对硝态氮的吸附性能强于LW-Fe。  相似文献   

8.
以商业化副产物聚偏二氯乙烯(PVDC)树脂粉末为碳源制备炭材料并研究了298 K时CO_2的吸附性能.研究结果表明,PVDC树脂直接碳化得到比表面积为1220 m~2·g~(-1)且孔径小于1.5 nm的纯微孔炭材料,CO_2在1 bar下的吸附量高达3.97 mmol·g~(-1).在此基础上用KOH对微孔炭材料进行活化处理,发现KOH活化在增大炭材料比表面积的同时能保持高微孔率,但1 bar下的CO_2吸附量适度降低.高压下CO_2吸附量与炭材料的比表面积呈正比,20 bar时在比表面积为2150 m~2·g~(-1)样品上的吸附量为18.27 mmol·g~(-1),这与其他类型高比表面积吸附剂相比都处于较高水平.  相似文献   

9.
近年来,水体重金属污染日趋严重,筛选出绿色高效处理重金属污染废水的吸附材料迫在眉睫.本文采用振荡吸附法研究了10种树皮类生物质吸附材料在不同投加量、初始浓度、pH和吸附时间下对模拟污染废水中Pb~(2+)和Cd~(2+)的吸附效率.结果表明,在25℃和180 r·min~(-1)恒温振荡条件下,10种树皮对Pb~(2+)和Cd~(2+)的吸附效率存在明显差异(P0.05).它们对模拟废水Pb~(2+)和Cd~(2+)的吸附量和吸附率,分别随初始浓度的增加呈递增和递减趋势;在0—120 min内随吸附时间的延长而提高;在pH 2.0—4.0范围内,随pH的增大而明显提升.红外光谱分析表明,羟基和羧基参与了Pb~(2+)和Cd~(2+)吸附.在投加量0.5 g·L~(-1)、模拟废水初始浓度50 mg·g~(-1)、pH 5.50和吸附时间120 min条件下,侧柏(Platycladus orientalis)皮、核桃树(Juglans regia)皮和构树(Broussonetia papyrifera)皮对Pb~(2+)的吸附量可达71.77—83.61 mg·g~(-1),对Cd~(2+)的吸附量达到64.69—70.33 mg·g~(-1),对实际污染废水具有较高的吸附率,最高可达98.21%.因此,侧柏皮、核桃树皮和构树皮可能是是吸附复合污染废水中铅镉的潜在材料.  相似文献   

10.
为研究丝瓜络固定化非活性颤藻对Pb~(2+)的吸附特性,选择游离颤藻为对照,考察环境因素对吸附过程的影响以及吸附动力学、等温线和吸附机理.结果表明,固定化和游离颤藻分别在90 min和60 min达到吸附平衡,与对照相比,吸附量增加了约20.6%;随着Pb~(2+)浓度的增加,固定化和游离颤藻的吸附量逐渐增加,并在70 mg·L~(-1)和60 mg·L~(-1)时,分别达到吸附饱和;吸附量依赖于pH的变化,当pH5时吸附量达到最大;吸附过程符合准二级动力学模型;Langmuir等温方程很好地描述了固定化和游离颤藻对Pb~(2+)的吸附过程,属于单分子层吸附,饱和吸附量分别为87.82±1.51 mg·g~(-1)和70.87±1.86 mg·g~(-1);傅里叶红外光谱(FTIR)和X射线能量色散光谱(EDS)分析表明,氨基、羧基、羰基和羟基与Pb~(2+)的络合作用是固定化和游离颤藻的主要吸附机理.  相似文献   

11.
皇竹草生物炭的结构特征及对重金属吸附作用机制   总被引:1,自引:0,他引:1  
本研究以皇竹草秸秆为生物质原料,在不同温度(400—700℃)下利用限氧热解法烧制一系列秸秆生物炭.利用扫描电镜(SEM)、X射线衍射(XRD)和拉曼光谱对所得生物炭样品进行分析,结果表明,500℃可使皇竹草秸秆生物炭充分热解,所得的生物炭晶体构成主要由半晶体结构涡轮层碳和一些矿物晶体组成,表面含有芳香类化合物、不饱和的醚类物质、无定形碳和C—C、C—O、C—OH等官能团.吸附实验表明,不同热解温度的皇竹草秸秆生物炭对混合重金属(Cr(Ⅵ)、Cu~(2+)、Cd~(2+))的吸附效果差异显著.在EDTA共存的条件下,皇竹草秸秆生物炭对Cr(Ⅵ)的吸附量远高于Cu~(2+)、Cd~(2+),其中500℃下热解得到的生物炭对Cr(Ⅵ)的吸附量达1.525 mg·g-1,而对Cu~(2+)和Cd~(2+)的吸附量约在0.05—0.15 mg·g-1.p H影响实验表明,在酸性条件(p H 1—4)下有利于Cr(Ⅵ)的吸附,其吸附量最高可达1.836 mg·g-1,在碱性条件(p H 9—13)下有利用于Cu~(2+)的去除,其吸附量最高可达0.836 mg·g-1.Cu~(2+)和Cd~(2+)在生物炭的吸附作用主要发生在C—C/C—H、C—O/C—OH等官能团上,重金属与生物炭中C—O官能团中的氧原子可能存在配位作用.  相似文献   

12.
镁改性芦苇生物炭对水环境中磷酸盐的吸附特性   总被引:1,自引:0,他引:1  
为了实现湿地水生植物资源化利用,加强对水环境中磷污染的控制,以中国东北地区湿地典型水生植物芦苇(Phragmitesaustralis)为生物质材料,在700℃条件下制备成生物炭,用六水合氯化镁作为改性剂对生物炭进行改性,通过SEM和能谱分析对芦苇生物炭改性前后进行表征,发现未改性的芦苇生物炭的电镜呈明显的孔隙结构,孔壁薄,孔隙排列有序,Mg元素含量仅为0.17%;而镁改性芦苇生物炭的孔隙负载了一些针状结构,且Mg元素的含量达到5.04%。说明镁离子成功负载在生物炭的表面。通过SEM、EDS、FTIR、XRD等技术对镁改性芦苇生物炭吸附磷酸盐前后进行表征,发现磷酸盐主要以Mg HPO_4和Mg_3(PO_4)_2的形态吸附在镁改性生物炭上。吸附动力学实验结果表明,镁改性生物炭对磷酸盐的吸附过程符合准二级动力学模型,吸附机理是由物理吸附和化学吸附共同作用的。通过颗粒内扩散模型的分析发现吸附速率由表面吸附、液膜扩散和颗粒内扩散等共同决定。镁改性生物炭对磷酸盐的吸附热力学可以用Langmuir方程描述(R~2=0.938 6),表明该吸附行为主要是单分子层吸附。共存离子实验表明,HCO_3~-和CO_3~(2-)能明显抑制镁改性生物炭对磷酸盐的吸附。经过3次解吸,镁改性生物炭吸附后的磷可全部释放。当温度为308 K,改性剂浓度为2 mol·L~(-1),改性生物炭投加量为2.0 g·L~(-1),p H为7.0时,吸附效果最佳,吸附量可达到2.37 mg·g~(-1)。  相似文献   

13.
含镉(Cd~(2+))废水不仅来源广泛且毒性强,易对生态环境及人类健康造成极大危害,因此研究水中Cd~(2+)的去除具有重要意义。以蔗糖为碳源,硼酸为掺杂剂,利用水热和化学活化相结合的方法制备了硼掺杂微介孔碳球(boron-doped micro-mesoporous carbon spheres,B-MMPC),并首次研究了硼掺杂量、吸附时间、pH、吸附剂质量、初始质量浓度与温度对Cd~(2+)吸附效果的影响。结果表明,硼掺杂有利于提升碳材料对Cd~(2+)的吸附效果,B-MMPC-3吸附Cd~(2+)的最佳pH=5,12 h基本达到吸附平衡,温度升高对吸附有利。当碳投加量为40 mg,p H=5,Cd~(2+)初始质量浓度为110 mg·L~(-1),取50 mL Cd~(2+)溶液,在298 K下吸附12 h后,B-MMPC-3对Cd~(2+)的吸附量高达41.9 mg·g~(-1);且在相同实验条件下,温度升高到308 K和318K时,B-MMPC-3对Cd~(2+)的吸附量分别是42.9mg·g~(-1)和43.3mg·g~(-1)。利用扫描电镜(SEM)、X射线能谱(EDS)、比表面积(BET)、红外光谱(FTIR)和拉曼光谱(Raman)表征吸附Cd~(2+)前后B-MMPC-3的形貌结构证实,B-MMPC-3为具有微介孔结构的碳球,直径为1-6μm,样品中硼、碳和氧的质量分数分别为6.46%、90.43%和3.11%,比表面积和孔体积分别为672.3m2·g~(-1)和0.36cm3·g~(-1),表面存在着丰富的含氧和含硼官能团。而且,提出了B-MMPC-3对Cd~(2+)的吸附机理主要有静电吸引、孔隙吸附以及O-B-O、C=O、-OH等官能团络合。B-MMPC-3对Cd~(2+)的吸附取得了较好的效果,有利于促进B-MMPC-3在其他重金属废水(铅、铜、铬、砷等)或印染废水(亚甲基蓝、橙黄G、甲基紫等)领域中的应用。  相似文献   

14.
目前针对生物炭修复重金属污染的水体、土壤方面的研究虽然很多,但是对其吸附污染物的机制研究却较少。为了提高生物炭对砷的吸附能力,以农业废弃物椰壳为原料,在300℃下利用硫酸及硫酸铁制备铁基改性生物炭,采用SEM-EDS、FTIR、XRD及XPS等手段对椰壳生物炭(CSB)、硫酸改性生物炭(SCSB)以及铁基改性生物炭(SFCSB)表面结构与特征进行表征,通过pH值影响实验、等温吸附实验和动力学吸附实验对CSB、SCSB及SFCSB 3种生物炭吸附砷(As)的效果进行比较。结果表明,硫酸及硫酸铁共同改性使生物炭的比表面积增大了1.56倍,表面官能团新增亚甲基(–CH_3)和羧基(–COO),SFCSB表面的Fe吸附As(Ⅴ)后在Fe2p能级生成了Fe_2O_3和FeOOH,证明铁基改性成功。SFCSB对As(Ⅴ)的吸附符合Elovich动力学模型及Langmiur等温吸附模型,当pH=5时,SFCSB对砷的最大吸附量为14.65 mg·g~(-1),与未改性的CSB相比吸附量提高了238倍。SFCSB对As(Ⅴ)的吸附方式为物理化学吸附,吸附机制包括生物炭表面正电荷与阴离子之间的静电吸引、O–H–As氢键结合、砷氧阴离子与铁氧化物的配位体效应和表面羟基官能团络合等。研究表明,铁基改性椰壳生物炭是一种高效的除砷吸附剂。该研究从农业废弃物利用和环境修复的角度出发,为制备更高效、能深度净化污染的生物炭提供参考,也为吸附机制的探讨提供理论依据。  相似文献   

15.
物理和化学改性方法会引起生物炭理化性质和微观结构的改变,从而影响其对污染物的吸附.通过对玉米粒进行微波膨化制备出膨化生物炭,再用氢氧化钠和磷酸分别对膨化生物炭进行改性制备膨化活性生物炭.利用SEM、BET、FT-IR和XRD等手段对生物炭材料进行表征.通过吸附试验探究了膨化和活化过程对生物炭吸附双酚A(BPA)的影响.结果发现,膨化后炭材料比表面积增大,吸附量增加.膨化结合酸活化的生物炭比表面积最大(856.34 m2·g-1),对双酚A的吸附量也最大(220.73 mg·g-1),吸附量较未经膨化和活化的生物炭提升了7倍.膨化结合碱活化的生物炭孔结构更加发达,平均孔径为6种材料中最大(2.25 nm). Langmuir模型能够较好地拟合6种生物炭对BPA的吸附等温线,说明吸附过程以单层吸附为主.吸附位点能量分析表明,BPA在低浓度时优先占据碳材料表面的高能位点,高浓度时转为占据较低能量的位点.内扩散模型分析说明膨化和活化均能提高扩散过程速率.  相似文献   

16.
以天然蛭石为载体制备了四氧化三铁-蛭石复合材料,采用静态平衡实验对该复合材料吸附Pb~(2+)的特性进行了研究,同时考虑了pH值、温度和投加量对吸附的影响.结果表明,四氧化三铁-蛭石复合材料对Pb~(2+)的吸附等温线符合Langmuir方程和Freundlich方程,Elovich方程和双常数方程可较好地描述该复合材料对Pb~(2+)的吸附动力学过程.由Langmuir等温式计算得出,在30℃、pH 5.50、投加量1.50 g·L~(-1)时,四氧化三铁-蛭石复合材料对Pb~(2+)的最大吸附量为128 mg·g~(-1).四氧化三铁-蛭石复合材料对Pb~(2+)的吸附量均随pH值、温度和投加量的增大而增加.与天然蛭石的对比实验表明,四氧化三铁-蛭石复合材料表现出较高的磁饱和强度且Pb~(2+)吸附能力提高55.5%.  相似文献   

17.
以硝酸钙和硅酸钠为原料,采用模板法制备了介孔硅酸钙.探讨了不同模板剂(十二烷基磺酸钠、十六烷基三甲溴化铵、P123和十六烷基三甲溴化铵-四甲基氢氧化胺)对介孔硅酸钙孔径和表面形貌的影响,通过X射线衍射(XRD)、扫描电镜(SEM)、BET表面分析和红外光谱(FT-IR)等对其结构进行了表征,考察其对含Pb~(2+)和Cu~(2+)模拟废水的吸附性能和解吸再生性能,并与活性炭的吸附性能进行比较.结果表明,采用十六烷基三甲溴化铵模板剂为模板合成的硅酸钙具有介孔结构,为狭缝孔,孔径主要介于4—50 nm之间,比表面积达158.13 m~2·g~(-1);在298 K下,对Pb~(2+)和Cu~(2+)的吸附容量分别为1.833 mmol·g-1和6.557 mmol·g-1,远比在相同吸附条件下活性炭的吸附容量高.介孔硅酸钙吸附重金属离子为放热反应,主要是表面羟基与重金属离子间配位化学作用.经过5次洗脱再生,对Pb~(2+)的平衡吸附量和吸附率仅分别降低了0.102 mmol·g-1和4.2%,表明其具有优良的吸附/再生性能,有望成为优良的重金属离子吸附材料.  相似文献   

18.
采用静态批试验方法研究了凹凸棒石和海泡石对溶液中Cd~(2+)的吸附特性,并通过考察一定离子强度下,不同初始浓度、固液比、吸附时间和pH值对吸附镉的影响。结果显示:在0.01 mol·L~(-1)NaNO_3离子强度下,高品位海泡石、凹凸棒石和低品位凹凸棒石对溶液中Cd~(2+)的吸附量与初始浓度呈正比,与固液比呈反比;根据Langmuir等温吸附方程拟合结果,在给定离子强度25℃条件下黏土矿物Cd~(2+)的理论饱和吸附量从大到小依次为高品位凹凸棒石(33.67 mg·g~(-1))、高品位海泡石(25.55 mg·g~(-1))、低品位凹凸棒石(11.52 mg·g~(-1))和低品位海泡石(5.24mg·g~(-1));Cd~(2+)在海泡石、凹凸棒石上的吸附受pH值的影响较大,在pH值为2~4时吸附效果最好;凹凸棒石对Cd~(2+)的吸附较为稳定,在3 h时基本达到吸附平衡;在离子强度为0.01 mol·L~(-1)NaNO_3、Cd~(2+)初始浓度为625 mg·L~(-1)、黏土矿物添加量为15 g·L~(-1)和pH值为2~4时,去除效果从大到小依次为高品位海泡石、高品位凹凸棒石、低品位凹凸棒石和低品位海泡石。  相似文献   

19.
利用水生植物苦草和狐尾藻制备镁改性生物炭,并对生物炭的比表面积、孔隙度、元素组成、pHpzc、FTIR、XPS、XRD进行表征,开展吸附水中微囊藻毒素-LR(MC-LR)的研究.结果表明,与未改性生物炭相比,镁改性生物炭具有较大的比表面积和中孔孔容,其表面负载有MgO和Mg(OH)2,且具有更多的含氧基团和更高的pHpzc.以2.0 mol·L-1的MgCl2浸渍制备的镁改性生物炭对MC-LR的去除效果最佳.准一级、准二级动力学、Elovich和颗粒内扩散模型都能在不同程度上较好地描述吸附过程.吸附等温线符合Langmuir和Freundlich模型,且较高的温度有利于对MC-LR的吸附,而较高的pH和较大分子量的DOM会抑制吸附.颗粒内扩散、中孔填充是吸附的重要机制,还可能存在氢键、静电吸引和π+-π EDA相互作用力.本研究为水生植物残体资源化利用提供新的思路.  相似文献   

20.
以玉米芯为原料制备玉米芯生物炭(CCBC),探讨其对水中对硝基苯酚(PNP)的吸附特性,同时运用扫描电镜、傅里叶红外光谱、比表面积仪和元素分析对生物炭的理化性质进行表征,考察了溶液pH值和生物炭投加量对CCBC吸附PNP的影响.结果表明,在溶液pH值在2.0—11.0范围内,随着溶液pH值的升高,CCBC对PNP的吸附量持续减小,最佳溶液pH值应在2.0—7.0范围内.CCBC对PNP的吸附在4 h时达到平衡,Elovich模型可以很好地拟合动力学数据,且颗粒内扩散不是唯一的控速步骤.吸附等温线符合Sips模型(R~20.98),最大吸附量为64.11 mg·g~(-1).热力学结果表明,CCBC对PNP的吸附是一个自发的吸热过程.PNP在CCBC上的吸附机制包括分配作用和表面吸附作用,且以表面吸附作用为主.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号