首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
微生物燃料电池串并联研究及应用   总被引:1,自引:0,他引:1  
罗帝洲  许玫英  杨永刚 《环境化学》2020,39(8):2227-2236
  相似文献   

2.
尿液是市政污水中氮、磷与COD的主要来源,将尿液从污水系统中分离单独处理可以缓解城市污水处理厂有机物、营养素的超负荷难题.以源分离的尿液为底物,研究微生物燃料电池的产电特征及其污染物去除效果,并进一步考察影响系统产电性能的因素.结果显示:在超过6个月的试验过程中,伴随有机物和总氮的减少,系统可保持长期稳定的功率输出.COD和总氮的最高去除率为92.9%和65.6%,系统最大输出功率为388.2 m W/m2,这也是迄今尿液微生物燃料电池所获得的最高功率.阳极碳毡表面菌群分析显示具有电化学活性的Arcobacter和具有发酵功能的Bacteroides为优势菌群.氨氮积累、微生物淤积以及尿液中的物质沉淀等是影响尿液微生物燃料电池性能的主要因素.研究结果表明,尿液微生物燃料电池高效地实现了在污染物去除的同时获得高输出功率,体系中Arcobacter是一种新型的胞外产电菌,其强电化学作用可利用在生物电能的获得过程中.  相似文献   

3.
微生物燃料电池构造研究进展   总被引:2,自引:0,他引:2  
微生物燃料电池(Microbial fuel cell,MFC)的研究在近几年获得了快速发展.产电微生物在厌氧条件下氧化底物释放电子和质子,电子通过导线传递给阴极,从而在外电路中形成电流,而质子通过质子交换膜进入阴极与电子和氧气结合生成水.微生物燃料电池的研究与应用开发涉及到从微生物、电化学到材料学和环境工程等科学领域的交叉,特别是废水处理能与微生物产电相结合的研究成果,使污水、污泥、垃圾等环境污染物的治理有可能成为生物质能源的生产过程,展示了微生物燃料电池的广泛应用前景.本文着重综述微生物燃料电池在构造上的进展,并介绍了其在水处理中的应用前景.图8参56  相似文献   

4.
米粉废水是一种含有高浓度有机质的工农业产物.本文以氧化石墨烯(GO)修饰石墨刷作为微生物燃料电池(microbial fuel cell,MFC)阳极实现米粉废水的产电以及能量回收.当米粉废水的COD浓度为1200 mg·L~(-1)时,MFC的最大功率密度可达1273.89 m W·m~(-2),此时从废水中回收的能量高达0.97 k Wh·kg~(-1)-COD,其远高于目前文献报道值,例如,MFC体系下市政废水中回收的能量仅为0.18 k Wh·kg~(-1)-COD.利用扫描电子显微镜(scanning electron microscopy,SEM)和激光共聚焦(confocal laser scanning microscopy,CLSM)观测电极表面形貌,傅里叶变换红外光谱仪(fourier transform infrared,FTIR)以及拉曼光谱(raman)测定阳极电极的化学结构,循环伏安曲线(cyclic voltammetry,CV)以及电化学阻抗图谱(electrochemical impedance spectra,EIS)测定反映电极电化学性能,结果表明:阳极表面GO负载量随GO修饰浓度的增加而增加;当混合产电菌驯化6个月后,石墨刷表面GO被还原为r GO;与以空白石墨刷为阳极构建的MFC相比,GO修饰石墨刷构建的MFC具有更好的电容特性且传质电阻更低,从而可回收更高的能量.  相似文献   

5.
微生物燃料电池运行条件的优化   总被引:3,自引:0,他引:3  
王万成  陶冠红 《环境化学》2008,27(4):527-530
以葡萄糖为燃料,构建了微生物燃料电池,分别考察了离子交换膜种类(以及没有)、电极材料、电极间距、溶液离子强度(以及添加铁氰化钾)对微生物燃料电池性能的影响,结果表明:使用均相阳离子交换膜、未抛光的高纯石墨板、电极间距0.5 cm、添加 NaCl溶液和铁氰化钾将产生最大的功率密度,优化了微生物燃料电池的运行条件.  相似文献   

6.
微生物燃料电池产电研究及微生物多样性分析   总被引:1,自引:0,他引:1  
以乙酸钠为阳极底物,碳毡材料为阴阳电极,构建了无介体双室微生物燃料电池(Microbial fuel cell,MFC),研究不同阴极受体、外接电阻、乙酸钠浓度和不同接种方式等因素对电池产电性能的影响.根据不同接种方式下微生物燃料电池产电性能差异,利用PCR-DGGE技术对不同接种方式下的微生物多样性进行分析.研究结果表明:在500 mL的阴阳极反应体系中,当接入500 Ω外电阻,阴极电子受体为高锰酸钾,阳极乙酸钠质量浓度为6.46 g/L,只接入附着有大量微生物的电极时,微生物燃料电池产电性能最好,最大电功率密度可达353.57 mW/m2,库伦效率为39.35%;微生物多样性分析显示.δ-变形菌纲、β-变形菌纲和拟杆菌门的菌种更适应微生物燃料电池的运行环境,能在电极上大量富集.提高电池的产电性能.是电极上的优势菌群.图8表1参21  相似文献   

7.
近年来,微生物燃料电池(Microbial fuel cells,MFCs)发展迅速,然而其功率输出仍然较低,其主要限制因素为接种物的活性及电极材料的选择.阳极电极常被作为有效的微生物载体,并介导电子的快速传递;因此使用新型的电极材料或修饰方法将成为提高MFC效率的重要手段.根据材料的物理特性及改性方法,将阳极电极材料划分为5类:修饰后的传统碳电极材料、石墨烯修饰电极材料、天然生物质电极材料、碳纳米管修饰电极材料以及金属修饰电极材料,并着重介绍了其中的热点——石墨烯修饰电极材料与碳纳米管修饰电极材料.通过分析,归纳出部分能够促进微生物燃料电池电化学表现的优异性能,例如强导电性、生物相容性、高比表面积及耐腐蚀性等;同时,修饰过后的纳米材料、石墨烯材料及三维大孔材料将成为日后的研究重点.未来,研究者们在选择电极材料的时候,应当同时考虑性能的差异性和成本的可控性.人们只有将新材料及改性方法投入到实际的大规模应用中,才能合理有效地实现废水处理及生产清洁能源的目的.(图6表5参117)  相似文献   

8.
以处理实际废水中的还原性硫化物以及染料废水中的偶氮染料为目的,构建了一个双室微生物燃料电池(Microbial fuel cell,MFC),阳极室接种硫氧化菌,阴极室以甲基橙(MO)作为电子受体,同时进行还原性硫化物生物氧化偶联偶氮染料降解.阳极接入硫氧化菌的MFC在外电阻为1 000Ω,甲基橙溶液浓度为50 mg L-1时,以4 d为一个反应周期,通过采集电池电压(V)、光谱扫描和循环伏安(CV)扫描来考察实验MFC的效率以及扫描电子显微镜(Scanning electron microscopy,SEM)来观察阳极生物膜.结果表明,阳极接种MFC的内阻为400Ω,最大电流密度和最大功率密度可分别达到656.25 mA m-2和120.76 mW m-2,而阳极未接种的空白MFC仅能达到259.38 mA m-2和34.81mW m-2.一个周期结束时,还原性硫化物完全被氧化,偶氮染料颜色由红色变为透明.SEM显示阳极碳毡上细菌的形态为杆状.综合以上结果,可说明可以通过MFC将还原性硫化物氧化并将偶氮染料进行降解.  相似文献   

9.
随着工业的快速发展及化石能源的大量消耗,迫切地需要寻找一种可持续发展的绿色节能技术来替代不可再生能源.微生物燃料电池(microbial fuel cell,MFC)以其处理难降解废水的同时产生电能的优势引起了人们的广泛关注,成为近几年的研究热点,而含硫废水一直以来是废水处理的难点.本文回顾了MFC生物除硫的发展历程,...  相似文献   

10.
一般水质监测方法需要经过取样和预处理等过程,微生物电化学原理的水质监测以其特有的直观便捷性引起了研究关注.以微生物燃料电池(microbial fuel cells,MFCs)为例,在不需前处理且不需外界提供能量的条件下,系统受到水质变化影响产生不同的电压或电流响应,被很多科研人员作为监测水体毒性物质的便捷监测方法进行研究.然而对不同学者的研究结果进行对比发现,水样中不同毒性物质在MFCs中有不同响应和灵敏度,甚至同一种的毒性物质在不同人员不同系统的研究中得到了相反的研究结果.本文简要介绍了使用MFCs作为水质变化监测方法的优点,回顾总结了不同研究体系中MFCs在毒性物质加入前后产生的电流或电压变化.针对每种毒性物质在不同条件下MFCs系统中的具体响应进行了比较和分析,认为在使用MFCs进行水中毒性物质的监测时,MFCs的系统结构、操作条件以及毒性物质自身特性等对于响应结果均有很大的影响,研究人员应针对具体存在的问题进行深入的系统研究,最终推动微生物电化学原理水质监测实际应用的研究进程.  相似文献   

11.
微生物研究在土壤质量评估中的应用   总被引:6,自引:0,他引:6  
为了防止土壤退化,实现资源的持续利用,必须对土壤质量进行评估.传统的理化指标已难满足需要,寻找能够全面反映土壤质量动态变化和判别胁迫环境或人为干扰下土壤质量变化的灵敏指标,已成为土壤生态学的研究热点.土壤微生物是土壤生态系统的重要组分,在生物地球化学循环过程中有重要的作用,对土壤环境变化和胁迫的反应十分灵敏.但由于土壤微生物种类繁多且难以培养,限制了其在土壤质量评价中的应用.近年来围绕土壤微生物总量、活性和组成的测定发展出了很多新的技术,如微生物生物量测定、土壤酶活件测定、土壤诱导呼吸强度测定、Biolog微量分析、纯培养、磷脂脂肪酸谱图分析和分子生物学技术等,极大地促进了微生物指标在土壤质量评价中的应用.本文就这3个方面的土壤微生物研究技术及其在土壤质量评价中的应用进行评述.表1参70.  相似文献   

12.
基于铁还原菌的微生物燃料电池研究进展   总被引:3,自引:0,他引:3  
微生物燃料电池(Microbial fuel cell, MFC)是未来理想的发电装置,而铁还原菌是目前MFC研究中重要的产电微生物.自然界中并无微生物产电的直接进化压力,而MFC电极与自然界中Fe(III)氧化物同为难溶性胞外电子受体,研究表明,铁还原菌对二者的还原有相似机制.基于铁还原菌的MFC具有无需外加介体,可利用多种有机电子供体作为燃料,能量转化率高等优点.本文分析了铁还原菌还原电极和还原Fe(III)氧化物机制的相似性,对近年来基于各种铁还原菌的MFC研究进展进行分述和总结,提出了铁还原菌MFC的发展趋势和研究方向.  相似文献   

13.
为探究二氧化铅在微生物燃料电池(Microbial fuel cell,简称MFC)中的还原及对产电性能的影响,采用电沉积法成功制备了钛基二氧化铅(PbO2/Ti),并将其作为阴极材料应用于双室MFC.二氧化铅的价态、晶型、形态特征以及电化学特性分别采用X射线光电子能谱(XPS)、X射线衍射光谱(XRD)、扫描电子显微镜(SEM)和循环伏安扫描(CV)进行分析,MFC的产电能力通过COD的去除、输出电压和极化曲线进行表征.结果显示,在以PbO2/Ti为阴极的MFC中COD的降解率可以达到87.68%,明显高于纯钛板的对照(71.4%).当外阻为1 000Ω时,最大输出电压达到760 mV,约为对照的30倍.最大功率密度达379 mW m–2,相应的电流密度为1 185 mA m–2.同时,PbO2被还原为PbO和Pb3(PO4)2.由此可见,二氧化铅由于其具有的强氧化性可作为廉价高效的阴极材料应用于MFC,从而大大提高MFC产电能力.  相似文献   

14.
铬污染土壤的微生物修复   总被引:3,自引:0,他引:3  
采用淋溶实验研究微生物对铬污染土壤中Cr(Ⅵ)的修复,研究培养基成分、培养基添加量及淋溶液pH值对修复效果的影响.结果表明,培养基淋溶能完全修复铬污染土壤中水溶性Cr(Ⅵ),浸出液中Cr(Ⅵ)浓度由初始的700.3mg·L-1降低至检出限以下.单独加入碳源作为培养基时,土壤中Cr(Ⅵ)不能得到完全修复,碳源与氮源结合作...  相似文献   

15.
螯合剂在污染土壤植物修复中的应用   总被引:4,自引:0,他引:4  
李玉红  宗良纲  黄耀 《生态环境》2002,11(3):303-306
向土壤中施加螯合剂可有效提高植物修复效率.根据螯合剂的作用原理,文章着重阐述了螯合剂施用后对污染土壤中重金属的活化、植物吸收和体内转移的影响,并对使用螯合剂的环境风险和今后的研究方向作了简要的讨论.  相似文献   

16.
微生物燃料电池(MFCs)作为一种可以替代传统能源的生物电化学系统引起研究者的极大兴趣,其阳极材料的构造是目前的研究热点.本文从改善阳极材料表面物理化学性质的角度出发,用吐司作为多孔碳前驱体,三聚氰胺为氮源,直接烧制氮掺杂三维碳材料,并与不添加氮源的阳极材料和未改性的商用碳布进行比较.制备的掺氮NB1000阳极具有较大的比表面积(216.664 m2·g-1)和优良的电导率.利用Geobacter和Shewanella混合菌落在微生物燃料电池(MFCs)中进行培养和性能评价,NB1000阳极的微生物燃料电池最大面功率密度为3049.714 mW·m-2,电流密度为7.4464 A·m-2,分别是普通碳布阳极的6.54倍和1.54倍.结果表明,NB1000作阳极的MFCs具有较高的功率密度,主要归因于阳极中引入氮掺杂,促进了产电微生物胞外电子传递过程所需的外膜c型细胞色素OmcA和MtrC的分泌.  相似文献   

17.
富营养化不仅影响水环境质量,而且破坏水生态平衡,对环境和人类健康造成危害。固定化微生物技术是利用物理或化学方法将游离微生物细胞限制在一定空间区域内,既能免受流水冲刷流失,可重复循环利用,又能保持生物活性,有效去除水体中的污染物,因此该技术被认为是控制水体富营养化的有效方法。该研究介绍了固定化微生物技术的特点及其在富营养化水体处理中的应用现状,综述了传统及新型固定化载体的选择及发展、降解和去除氮磷污染物的微生物种类以及常用固定化方法(吸附、包埋、共价结合、交联等)的优缺点。最后,针对当前微生物固定化技术面临的挑战,对今后的研究和发展方向提出了建议。该综述可为固定化微生物技术应用于各类废水处理提供参考。  相似文献   

18.
微生物燃料电池(microbial fuel cell,MFC)是一种将化学能转化为电能的技术。它可以利用包括河涌与海底的沉积物在内的众多基质来产生电能。在利用微生物燃料电池对沉积物进行修复时,通常采用将阳极埋在水底沉积物中,阴极悬于上覆水中的方式来构建电池。由于上覆水的存在,底泥中的污染物质不仅会被电池修复,也会向上覆水释放,影响底泥和上覆水的整体修复情况。以广州某黑臭河涌底泥为阳极微生物接种源及阳极基质,50 m M·L-1铁氰化钾缓冲溶液为阴极室溶液构建了双室有膜型微生物燃料电池,排除上覆水对微生物燃料电池修复底泥的影响,研究在不同的外接电阻下,MFC的产电性能以及MFC对底泥的修复效果。结果表明:以黑臭河涌底泥为阳极底物能够保持MFC较长时间产电运行(650 h)。构建的电池内阻分别为:1 341.6、1 339.2、1 330.2、1 386.7和1 311.7Ω。外阻能够对MFC的产电和功率密度输出产生影响:在外接电阻为1 500Ω时,MFC获得的稳定输出电压最高为0.753 V,最大输出功率为4.94 m W·m-2。在运行中,微生物燃料电池对底泥进行了修复:在外接电阻为1 500Ω时,有机质去除效果最佳,去除率为7.834%;全磷在外阻100Ω达到29.98%的最高去除率;铵态氮在外阻100Ω处达到41.64%的最高去除率;在硝态氮最高去除率则在外接1000Ω时,为71.52%。这说明了外阻能够影响电池对底泥的修复效果。  相似文献   

19.
为提高微生物燃料电池(Microbial fuel cell,MFC)的输出功率,降低成本,使实际应用成为可能,首次以酒精酵母为产电微生物,在不添加电子传递中间体的条件下,采用开路电压法和极化曲线法对自行设计的电池装置进行性能优化及产电效果研究,同时选取菌种驯化法对酒精酵母的产电适应性进行探讨.结果显示,铁阳极的电化学活性远高于铝阳极和铜阳极,且阳极形状对产电能力有影响;此MFC最大开路电压和输出功率密度分别为1.252V和502.3mW/m2,内阻为777.43Ω;菌种经驯化电流峰值提前,产电适应性增强.实验结果表明,本研究设计的系统性能良好,调整阳极材料和形状可提高电池产电能力,可通过驯化对菌种进行产电稳定性研究.  相似文献   

20.
实验构建生物阴极双室微生物燃料电池,探究在微氧条件下曝气量对其产电性能和阴极脱氮的影响.以乙酸钠为碳源,氯化铵为氮源.实验在25℃温度下,阴极持续曝气,并控制反应器内为微氧状态,富集培养短程硝化反硝化菌群.实现了在特定曝气量条件下生物阴极短程硝化反硝化脱氮.实验结果表明,在曝气量为1.64 mL·min-1的条件下,短程硝化反硝化脱氮效果最好.亚硝态氮积累率为81.70%,总氮去除率达到69.66%,最大稳定电压达0.47 V左右,库伦效率为43.8%,产电效能较好.针对实际污水处理开展相关实验,MFC阴极短程硝化反硝化总氮去除率可达到81.93%,优于全程硝化反硝化.在短程硝化反硝化的微生物群落中,Betaproteobacteria纲和Thauera菌属在短程硝化反硝化中得到了有效的富集,有利于生物脱氮,并且Nitrosomonas菌是主要的氨氧化菌属.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号