首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
有证据说明石油烃类可以经地热的加热作用从干洛根的热转化生成。在本研究中,我们从一个年轻的海相沉积物(加利福尼亚坦勒盆地)中分离出了干洛根、腐植酸和脂(苯-甲醇抽提物),将它们置于充有氮气的封闭玻璃管内加热。每根管子在150—410℃之间的一个温度下、5—120小时范围内加热一定时间,加热生成的气体、液体产物(苯-甲醇抽提物)和剩余有机质由气-液色谱、元素分析、红外光谱、顺磁共振波谱(ESR)和X射线衍射鉴定。  相似文献   

2.
近年来随着有机地球化学的进展及分析技术的提高,促进了有机地球化学与石油地质学的结合,产生了“三位一体”(油气生成、运移、聚集)的生油机理;明确了干洛根是生油母质;提出了用反应热力学定量研究生油量,为油气勘探指明了方向。  相似文献   

3.
<正> 本文对目前关于干洛根热分解生成油、气的概念作了评述。原生石油运移机制需要大量的水作为载体以把石油从生油岩运到贮油层,本文对这些机制作了讨论。过去的研究者把成岩作用期间由于转变而从蒙脱石和蒙脱石-伊利石混合层矿物中排出的层间水看作是载体水(carrier water)的最重要来源。 根据蒙脱石粘土的压实实验研究结果、层间和间隙水的排出机制的研究结果以及在这些阶段所观察到  相似文献   

4.
为揭示淹水-落干循环及季节性温度升高耦合过程对三峡支流消落带沉积物氮矿化的影响,根据野外调查,选取三峡支流澎溪河上游和下游两个水文断面,150、160和170 m这3个水位高程的沉积物样品,根据库区水文和气温特征,进行淹水-落干控温培养,分析沉积物氮矿化速率和累积量变化.结果表明与低水位高程相比,高水位高程(170 m)消落带总氮和铵态氮含量相对较低,而硝态氮含量较高.沉积物净氮矿化累积量和矿化速率均表现为落干期高于淹水期,且不同水位高程净氮矿化速率均随时间延长而下降.落干期净氮矿化累积量与沉积物总碳含量和碳氮比显著正相关,而淹水期与之负相关(P0.001).沉积物净氮矿化速率在落干期对温度升高敏感(Q_(10)1),而淹水期低水位高程对温度升高不敏感(Q_(10)1).可见,冬季淹水期温度升高对氮矿化影响较小,氮累积且释放缓慢.夏季落干期温度升高加速了氮矿化过程,增加了二次淹水后无机氮素输入水体和水体富营养化的风险.  相似文献   

5.
干洛根     
<正> 干洛根生油(气)说,已为大多数生油研究工作者重视。许多国家的研究人员(法国的蒂索,日本的田口一雄、浅川忠,加拿大的贝利,美国的埃德曼、亨特,荷兰的利季巴斯,西德的范丹伯格,苏联的乌斯宾斯卡娅及国内的许多生油研究人员),从近代  相似文献   

6.
干洛根的鉴定可通过多种途径进行,例如H/C和O/C比,氧化降解,物理化学方法和分步热解气相色谱法。所有这些方法以及其它的方法都用来探讨过关于干洛根的形成和演化的假说。另外,热解法还被用来评价油源岩。本报告谈到了从油源岩中抽提出的沥青的原生性问题,以此来确认或否定油  相似文献   

7.
对珠江广州段7个采样点的表层沉积物中的石油烃浓度进行了测定,结果表明广州珠江表层沉积物中的石油烃污浓度水平在288.62~725.13μg/g之间。市区南航道、后航道浓度相对较高,前航道黄埔涌口(Ⅶ号点)附近石油烃浓度已接近海洋第二类沉积物标准值;西航道至前航道和南航道、平洲水道至后航道沿程石油类浓度与有机质含量逐渐升高,说明广州市区是造成石油及有机污染的主要区域。与有机质含量及沉积物粒度的相关性分析发现,表层沉积物中石油烃浓度与有机质水平存在非常显著的正相关关系(相关系数r=0.987,P<0.01);与粘粒组分存在显著的正相关关系,相关系数(r=0.885,P<0.05),而与砂粒组分成非常显著的负相关关系(r=-0.919,P<0.01)。  相似文献   

8.
<正> 近年来已确立,时间和温度是成油作用中及随后石油裂解为甲烷的过程中的重要因素。1971年,N.V.洛帕廷(Lopatin)在苏联发表的一篇论文中描述了一个简单的、能够把时间和温度效应用于计算沉积物中有机质热成熟度的方法。他研究了一种成熟度的“时间-温度指标”来定量他的方法。  相似文献   

9.
利用2015年-2017年海洋环境监测数据,对辽东湾近岸海域沉积物石油类含量时空分布状况进行阐述,对其污染状况进行分析,对其污染来源进行讨论。研究结果表明,2015年-2017年辽东湾近岸海域沉积物石油类含量范围为1.5×10?6~2790.0×10?6,中位值为62.7×10?6。2015年-2017年辽东湾海洋功能区内沉积物石油类含量的总中位值大小顺序(前三位)为港口航运区>保留区>农渔业区。2015年-2017年辽东湾海洋功能区内沉积物石油类站位总超标率大小顺序(前四位)为工业与城镇用海区>保留区>农渔业区>港口航运区。石油类主要产生于港口航运区、工业与城镇用海区沿岸、保留区沿岸、农渔业区等生产活动较为频繁的区域。  相似文献   

10.
为探讨黄河流域生态环境变化对莱州湾生态环境的影响,本研究分析测试了黄河入海口70 cm沉积物柱状样的总有机质参数、脂肪烃组成及含量。结果表明:1968年前,黄河入海口沉积物中有机质含量较低,陆源高等植物源有机质和人类活动源石油烃在沉积物有机质中的占比都较低,藻类、细菌源有机质为沉积物有机质的主要来源;1968-2001年,黄河入海口沉积物中有机质含量逐年增高,沉积物中陆源有机质和人类活动源石油烃含量都呈增长趋势;2001-2010年,黄河入海口沉积物中有机质含量较低,其中,藻类、细菌源有机质占比增大,人类活动源的石油烃污染仍然明显;2010年后,黄河入海口沉积物中有机质含量又呈增高趋势,且沉积物中陆源有机质和人类活动源石油烃含量也呈增长趋势。综上所述,黄河入海口区域有机质污染程度较轻,沉积物有机质呈自然源和人类活动源混合输入特征,其中,人类活动源石油烃是该区域有机质污染的主要来源。  相似文献   

11.
淮河盱眙段柱状沉积物中PAHs分布及生态风险评价   总被引:8,自引:5,他引:3  
通过对淮河盱眙段柱状沉积物中16种优先控制的PAHs污染物进行GC-MS定量分析,结合210Pb同位素定年,重现了该区域多环芳烃的污染历史. 研究表明, 在柱状沉积物中整个沉积剖面(0~45 cm)w(PAHs)为102.9~306.9  ng/g(以干质量计). 20世纪30年代以后w(PAHs)总体呈下降趋势,但自进入21世纪以来w(PAHs)呈逐年上升趋势,并在2008年达到最高值. 从柱状沉积物的w(2~3环PAHs)/w(4环PAHs)来看,淮河盱眙段沉积物中PAHs污染的历史来源主要是石油类污染. 对照有关沉积物的生态风险评价标准,表层与底层芴出现了负面生态效应,而其他层面的潜在生态风险很小.   相似文献   

12.
以南京江北新区分流制雨水管道沉积物为研究对象,考察不同粒径沉积物中铵态氮(NH3-N)和硝态氮(NO3--N)干期分布特征,分析其随干期长度的变化关系,并探讨沉积物理化性质及微生物菌群结构对NH3-N和NO3--N干期分布的影响.结果表明:粒径≤0.075mm的沉积物中NH3-N占比最高(交通区30.8%,商业区36.7%);交通区粒径≤0.075mm的沉积物中NO3--N占比最高(33.0%),而商业区粒径0.075~0.15mm沉积物中NO3--N占比最高(34.4%);干期长度与交通区0.075~0.15mm粒径段的沉积物中NO3--N含量及商业区粒径≥0.3mm的沉积物中NH3-N含量之间的相关性均最显著;雨水管道沉积物中NH3-N和NO3--N的干期分布与O-H和N-H等官能团、表面极性和亲水性、微观形貌等有一定关联;交通区雨水管道沉积物中Gemmobacter等反硝化优势菌种(相对丰度总和为20.15%)对NO3--N干期分布影响更显著.  相似文献   

13.
据2003~2007年春、夏、秋季珠江口广州海域海水与2007年夏季沉积物中石油烃含量的调查结果,分析了该海域表层水体和表层沉积物的石油烃分布特征。结果表明,调查海域海水中石油烃含量为0.02~0.81 mg/L,平均含量为0.13mg/L;沉积物中石油烃含量为(51~1 910)×10-6,平均含量为544.9×10-6,石油烃含量较高的海域主要分布在南沙港、黄埔港-莲花山及蕉门水道出海口海域。石油烃浓度夏季最高,秋季居中,春季最低。与15 a前相比,广州海域水样与沉积物样中的石油烃浓度都有较大幅度的上升。  相似文献   

14.
以南京江北新区分流制雨水管道沉积物为研究对象,考察不同粒径沉积物中铵态氮(NH3-N)和硝态氮(NO3--N)干期分布特征,分析其随干期长度的变化关系,并探讨沉积物理化性质及微生物菌群结构对NH3-N和NO3--N干期分布的影响.结果表明:粒径≤0.075mm的沉积物中NH3-N占比最高(交通区30.8%,商业区36.7%);交通区粒径≤0.075mm的沉积物中NO3--N占比最高(33.0%),而商业区粒径0.075~0.15mm沉积物中NO3--N占比最高(34.4%);干期长度与交通区0.075~0.15mm粒径段的沉积物中NO3--N含量及商业区粒径≥0.3mm的沉积物中NH3-N含量之间的相关性均最显著;雨水管道沉积物中NH3-N和NO3--N的干期分布与O-H和N-H等官能团、表面极性和亲水性、微观形貌等有一定关联;交通区雨水管道沉积物中Gemmobacter等反硝化优势菌种(相对丰度总和为20.15%)对NO3--N干期分布影响更显著.  相似文献   

15.
大辽河水系表层沉积物中石油烃和多环芳烃的分布及来源   总被引:6,自引:1,他引:5  
对大辽河水系的3条干流浑河、太子河和大辽河表层沉积物中石油烃(PHs)和多环芳烃(PAHs)分析表明,PHs总量分布范围为61.37~229.42 μg·g-1,PAHs总量分布范围为61.9~840.5 ng·g-1.石油烃含量远远高于已报道的世界其它河流和海洋沉积物中的含量,表明大辽河水系沉积物石油烃污染严重;而与世界其它河流和海洋地区相比,多环芳烃污染水平相对偏低.石油烃分布特征为太子河>浑河>大辽河;多环芳烃分布特征为大辽河>太子河>浑河.烃污染来源诊断表明,石油烃污染以陆源植物和人为污染输入为主,多环芳烃污染以石油燃烧热解为主,工业和生活污水是烃污染的主要来源.  相似文献   

16.
通过实验室动态模拟实验,研究了在不同固/液比例、溶出温度、搅拌强度、沉积物的粒度等条件下,近岸海洋沾污沉积物中石油烃类化合物的释放过程。研究结果表明,石油烃类化合物的溶出浓度与参与溶出过程的固/液相比例成正比:当固液相比例为1/8时,可在30min之内确定溶出/吸附过程的动态平衡点。沉积物中石油烃类物质向海水中的释放,在10min之内,可基本达到最大初始浓度;未经处理的新鲜沉积物样品较烘干研磨样品,更利于油类的释放。溶出温度的升高及剧烈的反应条件,有利于沉积物中石油烃类物质向海水中的释放。沉积物的组成颗粒愈细,释放的初始浓度愈高。  相似文献   

17.
应用层次分析法,以天津滨海新区新河干渠沉积物为例,以各类污染物在沉积物中的生态效应区间值为标准确定各指标的权重,并结合污染物的实际含量对沉积物的污染状况进行定性、定量评价. 计算结果表明,权重最大的3个指标分别为DDD(权重为0.359)、DDE(权重为0.168)和金属汞(权重为0.105);得分最高的3个指标为总氮(0.034)、镍(0.030)和DDD(0.012);三大类指标得分依次为营养元素(0.040)、重金属(0.043)和持久性有机物(0.012);新河干渠沉积物污染综合评价得分为0.095. 评价结果表明,新河干渠沉积物总体上产生不利生态效应的可能性较低,产生不利效应的主要污染物为总氮、镍和DDD. 与单项指标评价相比,层次分析法综合评价体系突出了营养元素类污染物在沉积物环境风险中的贡献.   相似文献   

18.
渤海滩涂沉积物中石油污染物的迁移-转化规律研究   总被引:2,自引:0,他引:2  
采用紫外分光光度法对2003年夏季渤海滩涂表层沉积物和海水中石油烃含量进行了分析,探讨了海水中可溶油在滩涂沉积物中的迁移转化特征及其影响因素。结果表明,沉积物中石油烃含量在(55.8~2563.4)×10-6,平均值为555.82×10-6,与海洋沉积物质量(GB18668-2002)500×10-6相比,超标率为50%,超标倍数为1.05~5.13倍;受潮流作用和沉积环境的影响,石油烃含量自岸向海呈由低到高的分布特征;研究区是典型的淤泥质海岸带,由于其沉积物颗粒细,有机质含量高,很容易吸附石油烃;沉积物中石油烃是难生物降解的多环芳烃类。  相似文献   

19.
多元统计在渤海表层沉积物中PAHs源解析上的应用   总被引:8,自引:0,他引:8  
应用聚类分析、主成分分析、多元线性回归等多元统计方法对渤海表层沉积物中PAHs的来源进行分析.结果表明,来源相近的PAHs具有特征相似的成分谱.低环成分可指示石油源,而高环成分则代表燃煤、燃油等燃烧源.渤海表层沉积物中的PAHs呈现石油源和不完全燃烧源的混合特征,后者的贡献更为显著.就各海区表层沉积物而言,辽东锦州湾近岸的大部分站点以低环PAHs占优势,体现石油污染源的影响;其他海区的多数站点以高环PAHs为主,显示化石燃料的不完全燃烧是其主要来源,其中,辽河(双台子河、辽东湾和秦皇岛近岸的PAHs主要来自汽车尾气或燃油,辽东半岛、渤海湾、莱州湾和外海的PAHs主要源于燃煤.  相似文献   

20.
海河沉积物中磷释放的模拟研究   总被引:9,自引:4,他引:5  
在实验室条件下,分别对海河沉积物中磷的释放量与沉积物磷形态分布的关系及好氧/厌氧条件,pH,温度,外源磷含量,微生物活动等环境因素对其的影响进行了模拟研究. 结果表明,微生物作用是影响海河沉积物中磷释放量的主要因素;厌氧条件下,磷从沉积物向水体的释放量远高于好氧条件下沉积物磷的释放量;温度升高有利于沉积物中磷的释放;酸性和碱性条件下沉积物磷的释放量略高于中性条件下沉积物磷的释放量;当上覆水磷含量较高时,沉积物中的磷呈“负释放"状态. 研究还显示,沉积物中不同形态的磷含量与沉积物磷释放量有不同程度的相关性,其中可交换态磷(NH4Cl-P)和可还原态磷(BD-P)含量与沉积物磷的释放量高度相关(R2分别为0.99和0.84).   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号