首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The fate of fuel oxygenates such as methyl tert-butyl ether (MTBE) in the subsurface is governed by their degradability under various redox conditions. The key intermediate in degradation of MTBE and ethyl tert-butyl ether (ETBE) is tert-butyl alcohol (TBA) which was often found as accumulating intermediate or dead-end product in lab studies using microcosms or isolated cell suspensions. This review discusses in detail the thermodynamics of the degradation processes utilizing various terminal electron acceptors, and the aerobic degradation pathways of MTBE and TBA. It summarizes the present knowledge on MTBE and TBA degradation gained from either microcosm or pure culture studies and emphasizes the potential of compound-specific isotope analysis (CSIA) for identification and quantification of degradation processes of slowly biodegradable pollutants such as MTBE and TBA. Microcosm studies demonstrated that MTBE and TBA may be biodegradable under oxic and nearly all anoxic conditions, although results of various studies are often contradictory, which suggests that site-specific conditions are important parameters. So far, TBA degradation has not been shown under methanogenic conditions and it is currently widely accepted that TBA is a recalcitrant dead-end product of MTBE under these conditions. Reliable in situ degradation rates for MTBE and TBA under various geochemical conditions are not yet available. Furthermore, degradation pathways under anoxic conditions have not yet been elucidated. All pure cultures capable of MTBE or TBA degradation isolated so far use oxygen as terminal electron acceptor. In general, compared with hydrocarbons present in gasoline, fuel oxygenates biodegrade much slower, if at all. The presence of MTBE and related compounds in groundwater therefore frequently limits the use of in situ biodegradation as remediation option at gasoline-contaminated sites. Though degradation of MTBE and TBA in field studies has been reported under oxic conditions, there is hardly any evidence of substantial degradation in the absence of oxygen. The increasing availability of field data from CSIA will foster our understanding and may even allow the quantification of degradation of these recalcitrant compounds. Such information will help to elucidate the crucial factors of site-specific biogeochemical conditions that govern the capability of intrinsic oxygenate degradation.  相似文献   

2.
A laboratory study was conducted to examine cosolvent-enhanced in-situ chemical oxidation (ISCO) of perchloroethylene (PCE) using potassium permanganate (KMnO4). The conceptual basis for this new technique is to enhance permanganate oxidation of dense non-aqueous phase liquids (DNAPLs) with the addition of a cosolvent, thereby increasing DNAPL solubility while avoiding mobilization. Among 17 cosolvent candidates screened, tertiary butyl alcohol (TBA) and acetone were the most stable in the presence of KMnO4, both of which increased PCE aqueous solubility significantly, and therefore are suitable to be used as cosolvent in this study. Batch experiments indicated that the second-order rate constant for PCE oxidation by potassium permanganate was 0.043+/-0.002 M(-1) s(-1) in the purely aqueous (no cosolvent) solution. In the presence of 20% cosolvent (volume fraction=fc=0.2), the rate constant decreased to 0.036+/-0.003 M(-1) s(-1) with TBA and to 0.031+/-0.002 M(-1) s(-1) with acetone. However, in the presence of free-phase PCE, chloride ion concentration from PCE oxidation in acetone/water solutions (fc=0.2) was about twice that in aqueous solutions, indicating that the increase in PCE solubility more than compensated for the decrease in reaction rate constant, such that the oxidation efficiency of PCE was increased with cosolvent. A complete chlorine mass balance was observed in the aqueous system, whereas approximately 70% was obtained in TBA/water or acetone/water (fc=0.2). In soil columns containing residual DNAPL and subjected to isocratic flushing with step-wise increases in f(c) cosolvent, TBA at fc=0.2 resulted in PCE mobilization, whereas acetone at fc相似文献   

3.
A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer.  相似文献   

4.
In this paper, the treatment of real groundwater samples contaminated with gasoline components, such as benzene, toluene, ethylbenzene, and xylene (BTEX), methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), and other gasoline constituents in terms of total petroleum hydrocarbons as gasoline (TPHg) by an ozone/UV process was investigated. The treatment was conducted in a semi-batch reactor under different experimental conditions by varying ozone gas dosage and incident UV light intensity. The groundwater samples contained BTEX compounds, MTBE, TBA, and TPHg in the ranges of 5-10000, 3000-5500, 80-1400, and 2400-20000mugl(-1), respectively. The ozone/UV process was very effective compared to ozonation in the removal of the gasoline components from the groundwater samples. For the various gasoline constituents, more than 99% removal efficiency was achieved for the ozone/UV process and the removal efficiency for ozonation was as low as 27%. The net ozone consumed per mol of organic carbon (from BTEX, MTBE, and TBA) oxidized varied in the range of 5-60 for different types of groundwater samples treated by the ozone/UV process. In ozonation experiments, it was observed that the presence of sufficient amount of iron in groundwater samples improved the removal of BTEX, MTBE, TBA, and TPHg.  相似文献   

5.
Methyl tert-butyl ether (MTBE) is one of the main additives in gasoline. Its degradation is known to be difficult in natural environments. In this study, significant MTBE degradation is demonstrated at a contaminated site in Leuna (eastern Germany). Since the extent of the plume appeared to be constant over the last 5 years, an extended study was performed to elucidate the degradation processes. Special attention was paid to the production, accumulation and degradation of metabolites and by-products. Groundwater samples from 105 monitoring wells were used to measure 20 different substances. During the degradation process, several intermediates such as tert-butyl alcohol (TBA), tert-butyl formate, formate and lactate were produced. However, the potentially carcinogenic by-product methacrylate was not detected in several hundred samples. At the Leuna site, MTBE degradation occurred under microaerobic conditions. In contrast to hydrocarbons and BTEX, there was no evidence for anaerobic MTBE degradation. Among the degradation products, TBA was found to be a useful intermediate to identify MTBE degradation, at least under microaerobic conditions. TBA accumulation was strongly correlated to MTBE degradation according to the kinetic properties of both degradation processes. Since maximum degradation rates (v(max)) and k(m) values were higher for MTBE (v(max)=2.3 mg/l/d and k(m)=3.2 mg/l) than for TBA (v(max)=1.35 mg/l/d and k(m)=0.05 mg/l), TBA significantly accumulated as an intermediate by-product. The field results were supported by bench scale model aquifer experiments.  相似文献   

6.
Compound-specific isotope analysis (CSIA) was used to assess biodegradation of MTBE and TBA during an ethanol release study at Vandenberg Air Force Base. Two continuous side-by-side field releases were conducted within a preexisting MTBE plume to form two lanes. The first involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene ("No ethanol lane"), while the other involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene and ethanol ("With ethanol lane"). The delta(13)C of MTBE for all wells in the "No ethanol lane" remained constant during the experiment with a mean value of -31.3 +/- 0.5 per thousand (n=40), suggesting the absence of any substantial MTBE biodegradation in this lane. In contrast, substantial enrichment in (13)C of MTBE by 40.6 per thousand, was measured in the "With ethanol lane", consistent with the effects of biodegradation. A substantial amount of TBA (up to 1200 microg/L) was produced by the biodegradation of MTBE in the "With ethanol lane". The mean value of delta(13)C for TBA in groundwater samples in the "With ethanol lane" was -26.0 +/- 1.0 per thousand (n=32). Uniform delta(13)C TBA values through space and time in this lane suggest that substantial anaerobic biodegradation of TBA did not occur during the experiment. Using the reported range in isotopic enrichment factors for MTBE of -9.2 per thousand to -15.6 per thousand, and values of delta(13)C of MTBE in groundwater samples, MTBE first-order biodegradation rates in the "With ethanol lane" were 12.0 to 20.3 year(-1) (n=18). The isotope-derived rate constants are in good agreement with the previously published rate constant of 16.8 year(-1) calculated using contaminant mass-discharge for the "With ethanol lane".  相似文献   

7.
An evaluation of the influence and degradation of ground multilayer containers, such as Tetra Brik Aseptic (TBA), in the composting process of municipal solid wastes (MSW) is presented. Two composting piles were formed by mixing, in different proportions, an organic fraction of MSW and TBA material ground as flakes or stripes. Piles were periodically aerated by mechanical mixing. Evolution of the composting was followed by frequent measurements of suitable parameters such as temperature, moisture, ashes, total organic carbon (TOC), nitrogen, C/N ratio, pH, conductivity, nutrients, and heavy metals. As expected, aluminum and polyethylene films from TBA were not degraded during the processes, but the cardboard fraction of TBA showed a partial decomposition that was more intense in the material ground as flakes. After two months of curing, the composts were refined and analyzed to determine their nutrient and heavy-metals contents. Despite their poor aesthetic properties, mainly resulting from the presence of little pieces of plastic and aluminum films, the composts contained the required amounts of nutrients; furthermore, their heavy-metals content was below the limits proposed by some official European organizations.  相似文献   

8.
Sajiki J  Yonekubo J 《Chemosphere》2002,46(2):345-354
In this study, (1) change in bisphenol-A (BPA) leached from polycarbonate (PC) tube to water samples at 37 degrees C, (2) effect of reactive oxygen species (ROS) produced by Fenton reaction on BPA recovery and thiobarbituric acid (TBA) value with or without generally existing environmental substances such as alcohol, lipids and NaCl, were investigated. Amounts of BPA leached from PC tube to water samples containing lipids possessing unsaturated fatty acid with high TBA values were significantly lower than the amount of BPA to water only, and addition of NaCl to lipid containing water further decreased BPA concentration. The result indicates that BPA could be degraded by lipoperoxides formed by auto-oxidation of lipid, and NaCl plays an important role in BPA degradation. In the presence of ROS, BPA recovery was the lowest in water and addition of EtOH increased in both BPA recovery and TBA value, suggesting that EtOH could play a role as scavenger of ROS on the oxidative BPA degradation. Furthermore, the higher the concentration of lipid and/or NaCl, the lower the BPA recovery and TBA value. Physiologically and environmentally important concentrations of NaCl could enhance oxidative degradation of BPA in the presence of ROS.  相似文献   

9.
Abstract

An evaluation of the influence and degradation of ground multilayer containers, such as Tetra Brik Aseptic (TBA), in the composting process of municipal solid wastes (MSW) is presented. Two composting piles were formed by mixing, in different proportions, an organic fraction of MSW and TBA material ground as flakes or stripes. Piles were periodically aerated by mechanical mixing. Evolution of the composting was followed by frequent measurements of suitable parameters such as temperature, moisture, ashes, total organic carbon (TOC), nitrogen, C/N ratio, pH, conductivity, nutrients, and heavy metals. As expected, aluminum and polyethylene films from TBA were not degraded during the processes, but the cardboard fraction of TBA showed a partial decomposition that was more intense in the material ground as flakes. After two months of curing, the composts were refined and analyzed to determine their nutrient and heavy-metals contents. Despite their poor aesthetic properties, mainly resulting from the presence of little pieces of plastic and aluminum films, the composts contained the required amounts of nutrients; furthermore, their heavymetals content was below the limits proposed by some official European organizations.  相似文献   

10.
Biotic and abiotic transformations of methyl tertiary butyl ether (MTBE)   总被引:1,自引:0,他引:1  
Background Methyl tertiary butyl ether (MTBE) is a fuel additive which is used all over the world. In recent years it has often been found in groundwater, mainly in the USA, but also in Europe. Although MTBE seems to be a minor toxic, it affects the taste and odour of water at concentrations of < 30 μg/L. Although MTBE is often a recalcitrant compound, it is known that many ethers can be degraded by abiotic means. The aim of this study was to examine biotic and abiotic transformations of MTBE with respect to the particular conditions of a contaminated site (former refinery) in Leuna, Germany. Methods Groundwater samples from wells of a contaminated site were used for aerobic and anaerobic degradation experiments. The abiotic degradation experiment (hydrolysis) was conducted employing an ion-exchange resin and MTBE solutions in distilled water. MTBE, tertiary butyl formate (TBF) and tertiary butyl alcohol (TBA) were measured by a gas chromatograph with flame ionisation detector (FID). Aldehydes and organic acids were respectively analysed by a gas chromatograph with electron capture detector (ECD) and high-performance ion chromatography (HPIC). Results and Discussion Under aerobic conditions, MTBE was degraded in laboratory experiments. Only 4 of a total of 30 anaerobic experiments exhibited degradation, and the process was very slow. In no cases were metabolites detected, but a few degradation products (TBF, TBA and formic acid) were found on the site, possibly due to the lower temperatures in groundwater. The abiotic degradation of MTBE with an ion-exchange resin as a catalyst at pH 3.5 was much faster than hydrolysis in diluted hydrochloric acid (pH 1.0). Conclusion Although the aerobic degradation of MTBE in the environment seems to be possible, the specific conditions responsible are widely unknown. Successful aerobic degradation only seems to take place if there is a lack of other utilisable compounds. However, MTBE is often accompanied by other fuel compounds on contaminated sites and anaerobic conditions prevail. MTBE is often recalcitrant under anaerobic conditions, at least in the presence of other carbon sources. The abiotic hydrolysis of MTBE seems to be of secondary importance (on site), but it might be possible to enhance it with catalysts. Recommendation and Outlook MTBE only seems to be recalcitrant under particular conditions. In some cases, the degradation of MTBE on contaminated sites could be supported by oxygen. Enhanced hydrolysis could also be an alternative. - * The basis of this peer-reviewed paper is a presentation at the 9th FECS Conference on 'Chemistry and Environment', 29 August to 1 September 2004, Bordeaux, France.  相似文献   

11.
To help elucidate the mechanism of dechlorination of chlorinated triazines via metallic iron, terbutylazine (TBA: 2-chloro-4-ethylamino-6-terbutylamino-1,3,5-triazine), deisopropyl atrazine (DIA: 2-amino-4-chloro-6-ethylamino-1,3,5-triazine), and chlorinated dimethoxy triazine (CDMT: 2-chloro-4,6-dimethoxy-1,3,5-triazine) were degraded via zero valent iron under controlled pH conditions. The lower the solution pH the faster the degradation, with surface area normalized pseudo first order rate constants ranging from 2 (+/- 1)x10(-3) min(-1) m(-2) l for TBA at pH 2.0 to 4 (+/- 2)x10(-5) min(-1) m(-2) l for CDMT at pH 4.0. Hydrogenolysis (dechlorinated) products were observed for TBA and CDMT. Electrochemical reduction on mercury showed similar behavior for all of the triazines studied; the initial product of CDMT bulk electrolysis was the dechlorinated compound. The iron results are consistent with a mechanism involving the addition of surface hydrogen to the surface associated triazine.  相似文献   

12.
BACKGROUND: Methyl tertiary butyl ether (MTBE) is the second most highly produced industrial chemical in the US and a frequent groundwater pollutant. At the same time, MTBE is quite persistent to biotic and abiotic decomposition. The goal of this study was to find plant species that could degrade MTBE and might be used in phytoremediation. METHODS: Excised roots and leaves (0.3 g) from more than 24 Danish plant species out of 15 families were kept in glass vessels with 25 ml spiked aqueous solution for 2 to 4 days. MTBE concentrations were 1 to 5 mg/L. Samples were taken directly from the solution with a needle and injected to a purge and trap unit. MTBE and the main metabolite, TBA, were measured by GC/FID. RESULTS AND DISCUSSION: Solutions with roots of poplar (Populus robusta) and a willow hybrid (Salix viminalis x schwerinii) produced TBA in trace amounts, probably stemming from bacteria. Significant MTBE reduction (> 10%) was not observed in any of the tests. Leaves from none of the species (trees, grasses and herbs) reduced the concentration of MTBE in the solution and no TBA, nor any other known metabolite of MTBE, was detected. CONCLUSION: It was not possible to find plants capable of efficiently degrading MTBE. This gives rise to the conclusion that plants probably cannot degrade MTBE at all, or only very slowly. RECOMMENDATIONS AND OUTLOOK: For phytoremediation projects, this has, as consequence, that the volatilization by plants (except with genetically engineered plants) is the only relevant removal process for MTBE. For risk assessment of MTBE, degradation by the plant empire is not a relevant sink process.  相似文献   

13.
Iron pentacarbonyl was added to a cocentric diffusion burner flame burning a mixture of acetylene and ethylene in a co-flowing stream of air. Samples of aerosols and gaseous species were collected within the flames and above the flames with filters and a sampling bottle, and soot volume fraction through the flame was calculated with laser light extinction measurements. Aerosol was isokinetically collected in the inhalation chamber to measure particle concentration and size distribution. Laser extinction measurement showed that iron (Fe) gave an effect on soot formation process and scanning electron microscopy of the aerosol sample showed that soot particle size for the Fe-doped flame was relatively smaller than that of non-Fe-doped flame. Transmission electron microscopy results indicated that Fe species were separated from the soot at the downstream flame. Particles of the soot and Fe mixture could be generated continuously, and the concentration was kept constant under a given experimental condition using the cocentric diffusion flame burner. The mass loading variation for each target concentration (i.e., 100, 200, and 400 microg/m3) in the inhalation chamber was less than +/-5% during 10 hr. This particle-generating burner system could be used effectively for a bioassay test to evaluate risk  相似文献   

14.
Analysis of flame retarded polymers and recycling materials   总被引:1,自引:0,他引:1  
Riess M  Ernst T  Popp R  Müller B  Thoma H  Vierle O  Wolf M  van Eldik R 《Chemosphere》2000,40(9-11):937-941
Recycling activities on polymeric materials are increasing and becoming more and more important in recent years. For polymers containing no flame retardants, suitable recycling strategies already exist. In order to investigate the recyclability of flame retarded polymers that contain brominated flame retardants, a number of samples were analysed as received from a recycling company. Following the identification and sorting of the samples according to type of polymers and flame retardants, material recycling was tested for the flame retarded polymers identified to occur most frequently. The reactivity of the flame retardants during the recycling procedure was studied by analysing for brominated dioxins and furans. The results demonstrate that flame retarded polymers can be recycled under certain experimental conditions.  相似文献   

15.
Abstract

Biomarkers of methyl tertiary butyl ether (MTBE) exposure and the partitioning of inhaled MTBE into the body were investigated in a human chamber study. Two subjects were exposed to an environmentally relevant nominal 5,011 µg/m3 (1.39 ppm) MTBE for 1 hour, followed by clean–air exposure for 7 hours. Breath and blood were simultaneously sampled, while total urine was collected at prescribed times before, during, and after the exposure. Mass–balance and toxicokinetic analyses were conducted based upon the time series measurement of multiple body–burden endpoints, including MTBE in alveolar breath, and MTBE and tertiary butyl alcohol (TBA) in venous blood and urine.

The decay of MTBE in the blood was assessed by fitting the post–exposure data to a 2– or 3–exponential model that yielded residence times (τ) of 2–3 min, 15–50 min, and 3–13 h as measured by alveolar breath, and 5 min, 60 min, and 32 h as evaluated from venous blood measurements. Based on observations of lower than expected blood and breath MTBE during uptake and a decreasing blood–to–breath ratio during the post–exposure decay period, we hypothesize that the respiratory mucous membranes were serving as a reservoir for the retention of MTBE. The decay data suggest that 6–9% of the MTBE intake may be retained by this non–blood reservoir. The compartmental modeling was further used to estimate important parameters that define the uptake of inhaled MTBE. The first of these parameters is f, the fraction of Cair exhaled at equilibrium, estimated as 0.60 and 0.46 for the female and male subject, respectively. The second parameter is the blood–to–breath partition coefficient (P) estimated as ~18. The product of these parameters provides an estimate of the blood concentration at equilibrium as 8–11 times the air concentration. Blood TBA lagged MTBE levels and decayed more slowly (τ = 1.5–3 h), providing a more stable indication of longer term integrated exposure.

The concentration ranges of MTBE and TBA in urine were similar to that of the blood, ranging from 0.37 to 15 µg/L and 2 to 15 µg/L, respectively. In urine, MTBE and TBA by themselves bore little relationship to the exposure. However, the MTBE:TBA ratio followed the pattern of exposure, with peak values occurring at the end of the exposure (20– and 60–fold greater than pre–exposure values) before decaying back to pre–exposure levels by the end of the 7–h decay period. Urinary elimination accounted for a very small fraction of total MTBE elimination (<1%).  相似文献   

16.
Ladaa TI  Lee CM  Coates JT  Falta RW 《Chemosphere》2001,44(5):1137-1143
The effects of selected cosolvents ethyl alcohol (EtOH), isopropyl alcohol (IPA), and tertbutyl alcohol (TBA) on the Henry's law constant (H) of tetrachloroethylene (PCE) in aqueous solutions were investigated using the static headspace method. Alcohols in solution at a concentration around 20% and above acted as cosolvents increasing the aqueous solubility of PCE, which resulted in lower H values for PCE as compared to the value of H in deionized water. TBA, the most hydrophobic of the three alcohols, exhibited the strongest cosolvent effects, while EtOH had the weakest effects. A ln-linear relationship was observed between H and the volumetric fraction of alcohol added. Investigation of the solubilization of PCE in alcohol solutions confirmed the cosolvent trend observed for the three alcohols. A ln-ln relationship was observed between H and the enhanced solubility of PCE at a particular alcohol concentration. It was also observed that the value of H is a function of the enhanced solubility regardless of the type of cosolvent used. The results from this research further define the behavior of PCE in alcohol flooding solutions used in the remediation of PCE contaminated media.  相似文献   

17.
The feasibility of biodegradation of the fuel oxygenate methyl tert-butyl ether (MTBE) under iron-reducing conditions was explored in batch and continuous-flow systems. A porous pot completely-mixed reactor was seeded with diverse cultures and operated under iron-reducing conditions. For batch studies, culture from the reactor was transferred anaerobically to serum bottles containing either MTBE alone or MTBE with ethanol (EtOH) and excess electron acceptor. In the continuous-flow reactor, MTBE conversion to tert-butyl alcohol (TBA) was observed after 181 days of operation, and stable removal was achieved throughout the remainder of the study. Simultaneously, both the MTBE only and the MTBE and EtOH iron-reducing batch serum bottles also began to degrade MTBE. Bottles were respiked and the degradation rate was determined to be 2.36 +/- 0.10 x 10(-4) mmol MTBE/min-kgVSS. The EtOH present with MTBE degraded faster (7.76 +/- 0.08 x 10(-3) mmol EtOH/min-kg VSS) but did not have a noticeable effect on the rate of MTBE degradation. No evidence of TBA degradation was observed by the iron-reducing cultures. Stoichiometry of iron utilization was determined from the iron balance of the continuous-flow reactor, and it was found that the bulk of the electron acceptor was required for energy and maintenance with little remaining for cell synthesis. This is consistent with a yield coefficient of less than 0.1. Molecular analysis of the iron-reducing culture by denaturing gradient gel electrophoresis indicated that uncultured strains of delta-Proteobacteria were dominant in the reactor.  相似文献   

18.
Garoma T  Gurol MD  Thotakura L  Osibodu O 《Chemosphere》2008,73(11):1708-1715
In this paper, the oxidation of tert-butyl formate (TBF) in aqueous solution by an ozone/UV process was described. The oxidation process was investigated experimentally in a semibatch reactor. The results of the study indicated that the ozone/UV process was very effective in oxidizing TBF. tert-Butyl alcohol (TBA), hydroxy-iso-butyraldehyde (HiBA), acetone, formaldehyde, and formic acid were identified as major primary intermediates during the oxidation of TBF. About 90% organic carbon balance was obtained indicating that most reaction intermediates have been identified and quantified. Some of the primary intermediates were also oxidized in the ozone/UV system. Accordingly, HiBA, acetone, formaldehyde, and formic acid were the primary intermediates of TBA oxidation. The oxidation of acetone in the ozone/UV system generated formaldehyde, pyruvaldehyde, acetic acid, formic acid as primary intermediates. It was also observed that the reaction intermediates formed during the oxidation of TBF react well in the ozone/UV system and complete mineralization could be achieved by the process.  相似文献   

19.
《Chemosphere》2009,74(11):1708-1715
In this paper, the oxidation of tert-butyl formate (TBF) in aqueous solution by an ozone/UV process was described. The oxidation process was investigated experimentally in a semibatch reactor. The results of the study indicated that the ozone/UV process was very effective in oxidizing TBF. tert-Butyl alcohol (TBA), hydroxy-iso-butyraldehyde (HiBA), acetone, formaldehyde, and formic acid were identified as major primary intermediates during the oxidation of TBF. About 90% organic carbon balance was obtained indicating that most reaction intermediates have been identified and quantified. Some of the primary intermediates were also oxidized in the ozone/UV system. Accordingly, HiBA, acetone, formaldehyde, and formic acid were the primary intermediates of TBA oxidation. The oxidation of acetone in the ozone/UV system generated formaldehyde, pyruvaldehyde, acetic acid, formic acid as primary intermediates. It was also observed that the reaction intermediates formed during the oxidation of TBF react well in the ozone/UV system and complete mineralization could be achieved by the process.  相似文献   

20.
Acrylonitrile-butadiene-styrene (ABS) copolymers without and with a polybrominated epoxy type flame retardant were thermally degraded at 450 degrees C alone (10 g) and mixed with polyvinylchloride (PVC) (8 g/2 g). Gaseous and liquid products of degradation were analysed by various gas chromatographic methods (GC with TCD, FID, AED, MSD) in order to determine the individual and cumulative effect of bromine and chlorine on the quality and quantity of degradation compounds. It was found that nitrogen, chlorine, bromine and oxygen are present as organic compounds in liquid products, their quantity depends on the pyrolysed polymer or polymer mixture. Bromophenol and dibromophenols were the main brominated compounds that come from the flame retardant. 1-Chloroethylbenzene was the main chlorine compound observed in liquid products. It was also determined that interactions appear at high temperatures during decomposition between the flame retardant, PVC and the ABS copolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号