首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
针对间歇式加煤锅炉SO2的排放特性和平均排放浓度测试,结合两种常用的智能烟气分析仪,列举定电位电解法在实际测试中的应用情况以及不同测试分析仪器的功能性特点,指出当前在实际测试过程中存在的人为随意性和易出现的测试误差,提出消除和减少误差的相应对策。  相似文献   

2.
应用车载式尾气排放测试设备对北京国Ⅲ、国Ⅳ排放标准的柴油公交车和国Ⅲ排放标准压缩天然气公交车在实际道路上的尾气CO2排放特征进行了实测研究,测试时间为30 787 s,行驶里程达到168.58 km,共获得30 787组有效数据,测试数据能够反映车辆在实际道路上的排放特征。3种类型车辆测试期间在实际道路上的CO2排放因子分别为(1.10±0.24)g/m、(0.99±0.23)g/m和(1.02±0.21)g/m。车辆的排放状况与车辆的行驶工况有密切关系,车速较低,加速度越大,CO2排放速率和排放因子越大,车辆在匀速且车速较快时排放速率和排放因子较低。  相似文献   

3.
机动车排放实验室测试与实际道路测试结果间存在较大差距,目前实际道路测试普遍采用车载排放系统(portable emission measurement system,PEMS),但PEMS系统具有操作复杂、测试装置整体较重等缺点,急需简单易行的实际道路排放测试系统。基于传感器技术的机动车智能排放测试系统(smart emission measurement system,SEMS),结构简单,操作方便,将其引入机动车实际行驶排放检测非常必要,但国内缺乏SEMS系统测试应用相关研究。通过研究国内外SEMS系统现状,并开展相关对比测试试验,研究SEMS系统引入机动车排放检测可行性与存在的问题。结果表明:SEMS系统测试的颗粒物数量(PN)与PEMS测试结果的差异为10%~30%;氮氧化物(NOx)排放量与实际道路对比测试结果差异较大,特别是激烈驾驶情况下,最大差异高达369%;PN和NOx排放测试结果瞬时分布和累计分布趋势较为一致。基于测试试验及结果分析,探讨了SEMS系统引入机动车排放检测的可行性,提出SEMS系统引入机动车排放检测具备一定可行...  相似文献   

4.
汽油车尾气羰基化合物排放特征研究   总被引:2,自引:0,他引:2  
为了研究在用汽油车实际道路尾气中羰基化合物的排放特征,基于车载排放测试技术,利用2,4-DNPH吸附管对北京市10辆不同排放标准的在用汽油车实际道路尾气排放进行采样测试,并应用高效液相色谱对排放的羰基化合物进行定量分析.结果表明,排放标准对测试汽油车尾气羰基化合物排放因子及组分均有明显影响,国Ⅰ前、国Ⅰ、国Ⅱ、国Ⅲ和国Ⅳ标准测试车辆羰基化合物排放因子分别为6.41、3.20、2.59、2.05和1.09 mg·km-1.行驶工况对测试车辆的羰基化合物排放因子也有较大影响,热启动工况排放因子最高,热运行工况次之,快速路工况最低.  相似文献   

5.
天然气-汽油双燃料车实际道路排放特性研究   总被引:8,自引:3,他引:5  
为研究使用天然气对轻型汽车排放的影响,利用便携式排放测试系统(PEMS),对25辆压缩天然气-汽油双燃料出租车在实际道路上分别使用汽油和天然气时的CO2、CO、NOx和THC排放进行了对比测试.研究结果表明:实际道路上,原装车使用天然气相比汽油时,CO2、CO的排放平均分别降低22%和24%,NOx和THC的排放平均分...  相似文献   

6.
王海鲲  傅立新  周昱  林鑫  陈爱忠  葛卫华  杜譞 《环境科学》2008,29(10):2970-2974
采用一套车载排放测试系统,对深圳市7辆具有代表性的轻型车辆进了实际道路排放测试.根据测试结果,分析了机动车运行工况对排放的影响,比较了基于油耗和行驶里程的排放因子,并计算了各测试车辆的平均排放因子.结果表明,深圳市轻型机动车加速和减速运行模式共占整个运行时间的66.7%和行驶里程的80.3%,对各种污染物的贡献率达74.6%~79.2%.并且加速模式下的排放水平明显高于其他运行模式;基于油耗的排放因子受车速的影响较小,可以避免因机动车运行工况不同所带来的排放差异,从宏观尺度更为合理地预测机动车污染物排放量;车辆技术水平对排放影响很大,化油器车的C0、HC和NOx排放因子分别是欧Ⅲ车的19.9~20.5、5.6~26.1和1.8~2.0倍;我国在进行轻型车排放测试时使用ECE EUDC工况,不能反映我国城市实际道路行驶工况下的机动车排放水平.  相似文献   

7.
为研究国Ⅵ混合动力车在北京和昆明海拔条件下的实际道路排放特性差异,在北京和昆明使用便携式车载排放测试系统(portable emissions measurement system, PEMS)对一辆国Ⅵ混合动力车进行实际道路行驶排放测试.基于实际道路测试的数据,分析了混合动力车在市区、市郊和高速3种类型道路的排放特征,并利用移动平均窗口法和算术平均法计算了混合动力车的排放因子.结果表明:(1)在3种道路类型中一氧化碳(CO)排放速率和颗粒物数量(PN)瞬态数值均出现明显的波动,峰值分别达0.18 g/s和3.75×1011个/s,CO排放速率的波动主要集中在高速路,而PN瞬态数值的波动集中在市区和市郊路.混合动力车的氮氧化物(NOx)排放速率波动主要出现在市区路,且最大值为0.016 g/s.(2)由于海拔和工况的影响,与混合动力车在北京的污染物排放测试结果相比,在昆明混合动力车的CO排放因子增加了85%,而NOx和PN排放因子分别下降了37%和27%.(3)分别采用移动平均窗口法和算术平均法(代表车辆原始排放结果)对...  相似文献   

8.
为研究国Ⅵ混合动力车在北京和昆明海拔条件下的实际道路排放特性差异,在北京和昆明使用便携式车载排放测试系统(portable emissions measurement system, PEMS)对一辆国Ⅵ混合动力车进行实际道路行驶排放测试.基于实际道路测试的数据,分析了混合动力车在市区、市郊和高速3种类型道路的排放特征,并利用移动平均窗口法和算术平均法计算了混合动力车的排放因子.结果表明:(1)在3种道路类型中一氧化碳(CO)排放速率和颗粒物数量(PN)瞬态数值均出现明显的波动,峰值分别达0.18 g/s和3.75×1011个/s,CO排放速率的波动主要集中在高速路,而PN瞬态数值的波动集中在市区和市郊路.混合动力车的氮氧化物(NOx)排放速率波动主要出现在市区路,且最大值为0.016 g/s.(2)由于海拔和工况的影响,与混合动力车在北京的污染物排放测试结果相比,在昆明混合动力车的CO排放因子增加了85%,而NOx和PN排放因子分别下降了37%和27%.(3)分别采用移动平均窗口法和算术平均法(代表车辆原始排放结果)对...  相似文献   

9.
利用便携式排放测试系统(PEMS)对6辆典型国六重型柴油车开展了实际道路排放试验,并利用功基窗口法分析了重型车实际道路CO、NOx和PN排放特性,结果表明:实际行驶过程中重型柴油车排放后处理装置能有效控制CO和PN排放,但NOx排放存在显著不确定性.现行重型国六排放标准规定的功基窗口法在排放评估过程中最高可剔除46.68%的NOx高比排放窗口,大幅低估了实际道路工况尤其是市区拥堵路况下的重型柴油车NOx实际排放量,建议采用更加科学合理的数据处理方法评价重型车实际道路排放.  相似文献   

10.
国Ⅲ柴油公交车尾气排放实际道路测试研究   总被引:1,自引:0,他引:1  
应用车载式尾气排放测试设备对北京国Ⅲ排放标准的柴油公交车在实际道路上的尾气排放特征进行了实测研究,测试时间为10 552 s,行驶里程达到61.97 km,共获得10 552组有效数据,测试数据能够反映车辆在实际道路上的排放特征。车辆在实际道路上尾气排放NOx、CO、THC和PM的排放因子分别为14.12±2.54g/km、8.04±2.51 g/km、0.158±0.022 g/km和3.16±1.73 g/km。研究结果表明,油耗及污染物排放与各行驶工况下的速度、加速度均密切相关,车辆在高速加速行驶状态下易产生高的排放速率。车速小于10 km/h时排放因子远大于车速较快时的排放因子,车辆在加速时的排放因子最大,减速时最小。车辆在30 km/h~50 km/h速度区间内等速行驶时,油耗与排放因子最为经济且环境友好。测试车辆排放的颗粒形态主要集中在累积模式,属于纳米或超细微粒。  相似文献   

11.
大气污染物排放源清单由于在数据收集过程中存在的不可避免的监测误差、随机误差、关键数据缺乏以及数据代表性不足等因素而具有不确定性,而排放源清单的不确定性指的是人们对排放清单的真实值缺乏认识和了解.介绍了目前大气排放源清单定量不确定性方法框架,并使用电厂NOx在线监测数据,通过实际案例量化排放源清单中的不确定性.结果表明:即使对被认为具有较高准确性的火电厂点源排放清单,案例中NOx的排放源清单来自随机误差的不确定性在±15%左右.对排放源清单的不确定性量化有助于决策者确定污染物排放削减目标的可达性和科学制定大气污染物控制策略,指导排放源清单的改进和数据收集工作.同时,对我国排放源清单开发中不确定性分析提出建议.   相似文献   

12.
行人过街信号控制路口交通噪声动态模拟与特性分析   总被引:2,自引:0,他引:2  
用实验方法测定了3种不同车型单辆车在参考距离处的噪声排放量及加减速噪声修正值.然后利用微观交通仿真软件为交通噪声的模拟提供实时的交通流数据,并结合车辆噪声排放量和传播衰减模型对行人过街信号控制路口交通噪声进行了动态模拟.最后将模拟结果与实测数据进行了比较分析,结果表明:等效声级Leq的预测误差小于2dB,统计声级L10...  相似文献   

13.
The conventional Ensemble Kalman filter (EnKF), which is now widely used to calibrate emission inventories and to improve air quality simulations, is susceptible to simulation errors of meteorological inputs, making accurate updates of high temporal-resolution emission inventories challenging. In this study, we developed a novel meteorologically adjusted inversion method (MAEInv) based on the EnKF to improve daily emission estimations. The new method combines sensitivity analysis and bias correction to alleviate the inversion biases caused by errors of meteorological inputs. For demonstration, we used the MAEInv to inverse daily carbon monoxide (CO) emissions in the Pearl River Delta (PRD) region, China. In the case study, 60% of the total CO simulation biases were associated with sensitive meteorological inputs, which would lead to the overestimation of daily variations of posterior emissions. Using the new inversion method, daily variations of emissions shrank dramatically, with the percentage change decreased by 30%. Also, the total amount of posterior CO emissions estimated by the MAEInv decreased by 14%, indicating that posterior CO emissions might be overestimated using the conventional EnKF. Model evaluations using independent observations revealed that daily CO emissions estimated by MAEInv better reproduce the magnitude and temporal patterns of ambient CO concentration, with a higher correlation coefficient (R, +37.0%) and lower normalized mean bias (NMB, -17.9%). Since errors of meteorological inputs are major sources of simulation biases for both low-reactive and reactive pollutants, the MAEInv is also applicable to improve the daily emission inversions of reactive pollutants.  相似文献   

14.
王晓宁  于思源  郭术林 《环境工程》2020,38(11):130-134
我国寒冷地区冬季具有交通拥挤严重、车辆加减速频率和怠速比例高、行驶工况恶劣、排放集中不易扩散等特点。针对上述特点,引入加减速排放参数改进CAL3QHC模型,在低温条件下利用台架实验对各类基础排放率进行修正,并根据实地调查寒冷地区城市道路交通特征修正IVE模型得到NOx和PM的单车综合排放因子、加速排放因子和减速排放因子。通过对哈尔滨冬季实地调查和车载实验分析,对修正模型NOx和PM的预测进行检验。研究结果表明,修正后的模型NOx和PM的相对误差减小了9.2%和19.4%。  相似文献   

15.
针对二氧化碳的轻型汽油车VSP区间划分   总被引:1,自引:1,他引:0  
利用PEMS对北京市16辆轻型汽油车进行了排放测试,分析了机动车比功率VSP对CO2的排放影响.在此基础上,同时考虑排放速率和排放分担率两种因素,按CO2排放特性对VSP区间重新划分.新划分区间的排放率最小值为0.5587g.s-1,最大值为3.4013g.s-1,排放分担率最小值为4.61%,最大值为14.17%.此外,VSP=0的数据排放率为0.5587g.s-1,低于周围区间,分担率为14.17%,与其它区间相当,因此,其被划入独立区间.接着,引入速度及发动机负荷ES两个参数,对VSP区间进行再划分,分别分为30个排放区间.最后,通过北京不同类型道路排放实例进行验证,发现针对快速路和非快速路而言,MOVES预测误差分别为11.43%,14.34%,IVE为12.23%,15.53%,新VSP划分方式为10.05%,12.57%,新VSP-速度组合区间的划分方式为9.10%,11.56%,新VSP-ES组合区间的划分方式为9.90%,12.23%,其中,新VSP-速度组合区间的划分方式误差最小.  相似文献   

16.
合成革企业二甲基甲酰胺排放清单的初步建立   总被引:1,自引:0,他引:1  
根据合成革生产中的物料平衡,结合企业现场调查、原料成分测定及污染源监测等数据,建立合成革企业二甲基甲酰胺(DMF)排放清单. 结果表明:合成革生产中湿法生产线和干法生产线的DMF排放量分别为108.10和63.50 t/a,其中90%以上来自无组织排放. 由于合成革产品需求的季节性变化及当地气候特点,DMF排放在3,4和9─12月较高,分别占全年总排放量的10%以上,而在2,5─7月相对较低,均不到全年总排放量的7%. 基于建立的DMF排放清单和研究区域气象数据,采用AERMOD模型模拟8个监测点在监测时段的ρ(DMF)日均值. 对ρ(DMF)模拟值和实测值的拟合结果可知,84%的模拟值与监测值的相对误差在100%以内,表明建立的DMF排放清单较准确.   相似文献   

17.
气象模拟误差对异戊二烯排放估算的影响   总被引:3,自引:3,他引:0  
利用MEGAN模式估算了珠三角地区2006年异戊二烯的排放情况,并设计了两组敏感性实验深入探讨了气象模拟误差对异戊二烯排放的影响.估算结果显示,2006年珠三角地区异戊二烯的排放量为95.56×106kg(以C计),且主要分布在珠三角地区周边植被覆盖较高的地方;受气象条件季节变化的影响,异戊二烯的排放表现出显著的季节和日变化特征,最大异戊二烯排放通量季节出现在夏季,为0.920t·km-2(以C计),最大排放速率均出现在13:00.敏感性实验结果显示,气象模拟误差能显著影响异戊二烯的排放,升高(降低)太阳辐射的输入,异戊二烯的排放量增加(减小)36.20%~50.70%(30.73%~41.88%),大于温度改变引起的排放量变化;升高(降低)气象输入并不会改变异戊二烯排放的日变化特征,但能显著影响排放速率的大小.上午8:00或下午17:00,异戊二烯排放速率的改变最为明显.  相似文献   

18.
基于浮动车数据的机动车排放实时测算模型   总被引:1,自引:0,他引:1  
根据浮动车检测技术可针对单车采集,所收集数据中的平均速度按照采样间隔连续的特点,利用道路实测数据建立了面向其应用的轻型车尾气排放实时测算模型.模型中引入平均速度增量(ASI)指标对平均速度进行细分,并以其来反映相同平均速度下的排放变化.结果表明,与实测数据相比,模型对CO2的计算误差在10%以内;NOx、HC和CO的计算误差在15%以内.同时提出了模型使用方法,可以实现对路网中交通尾气污染的实时测算和动态评估.  相似文献   

19.
典型煤化工企业硫代谢特征及其质量平衡   总被引:1,自引:0,他引:1  
针对煤化工行业排放数据,不同来源数据存在较大差异,社会各界对其真实性、准确性存在诸多质疑,因而有必要从新的角度对排放统计数据进行评估.选取某典型煤化工企业,采用物料平衡方法核算了该企业硫代谢通量,探讨了其代谢特征,核算结果清晰显示了该企业硫的主要来源和去向,为减排及政策制定提供了科学依据.该企业2014年硫输入输出基本平衡,平衡项表征的统计误差在可接受范围内,误差产生原因包括原料含硫系数不稳定、固废含硫系数缺失、废气监测难度大,成分复杂等.不同来源SO_2排放量对比分析显示,排污申报数据略高于基准核算值,后评估数据偏小,而环境统计数据远大于基准值.数据的真实性与准确性有待提高;不同层次、不同部门统计方法有待完善及统一;无组织排放是重要的硫输出途径,不容忽视.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号