首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ burning is being utilized in the United States to remove oil from inland oil spills, usually when physical recovery is not feasible. Studies have found that habitats may recover from the effects of burning in less than a year under optimal conditions but recovery may take much longer. Policies authorizing the use of in situ burning across the US are very inconsistent. Some states use it routinely, but others do not allow it. Inland in situ burning can be a useful response tool and the federal government needs to issue more guidance to the states. Responders also need to collect more data on the environmental impacts of burning.  相似文献   

2.
For over 10 years scientists have studied the effects of in situ burning of oil on air and water quality and potential related health issues. The recent Newfoundland Offshore Burn experiment, conducted by Environment Canada, was the culmination of several years of work. The results of this experiment found that ‘emissions from the in situ oil fire were lower than expected and all compounds and parameters measured were below health concerns at 150 m from the fire’ (The Newfoundland Offshore Burn Experiment—NOBE, Preliminary Results of Emissions Measurement). Polyaromatic Hydrocarbons (PAHs) were found to be lower in the soot generated from the fire than in the starting oil prior to the fire. The conclusion reached was that the environmental benefits resulting from the burning of oil spills far outweigh the potential air pollution caused from the smoke. These findings now open the door on the use of in situ burning of oil as a major tool to be used to mitigate environmental damage from oil spills.As a result of these and other test findings, Region 6 of the Regional Response Team (made up of the U.S. Coast Guard, The Minerals Management Service, The Department of Environmental Quality, The U.S. Environmental Protection Agency, and other state and federal agencies) had pre-approved the use of in situ burning of oil spills for offshore Louisiana and Texas. Other parts of the country and other countries are evaluating the use of in situ burning to combat oil spills. Now that the scientific community has weighed the environmental costs and benefits of in situ burning it is time to address the operational and procedural issues.  相似文献   

3.
This research note summarizes Spartina alterniflora and Sagittaria lancifolia sensitivity to oiling and in situ burning of applied oil. Experimental plots (2.4 m × 2.4 m × 0.6 m) were constructed in salt and freshwater marsh habitats and South Louisiana Crude (SLC) applied (2 l m−2) to stems and leaves of marsh plants of oil and oil/burn treatment plots. Burning was initiated mid-August when winds were calm and a 15-25 cm floodwater layer covered the marsh substrate. Vegetative responses (stem density, height, carbon assimilation and biomass production) were measured for approximately one year following the in situ burns. Application of oil and burning of SLC only had short-term detrimental effects on salt and freshwater marsh vegetation. About one year after burns, vegetative responses measured in oiled and oiled/burned plots approached or exceeded control (no oil or burn) values. Field results suggest, under our experimental conditions, in situ burning of spilled oil in S. alterniflora and S. lancifolia marshes may be a remediation operation to consider.  相似文献   

4.
This paper is a summary of the fundamentals that influence the window-of-opportunity for in situ burning of oil at sea. It is a discussion of the variables and factors that influence the capabilities and limitations of in situ burning of oil. This includes the requirements for ignition and sustained burning and the factors that influence the quantity of residue and burn efficiency and the use of emulsion breakers.  相似文献   

5.
The burning rate of a slick of oil on a water bed is characterized by three distinct processes, ignition, flame spread and burning rate. Although all three processes are important, ignition and burning rate are critical. The former, because it defines the potential to burn and the latter because of the inherent possibility of boilover. Burning rate is calculated by a simple expression derived from a one-dimensional heat conduction equation. Heat feedback from the flame to the surface is assumed to be a constant fraction of the total energy released by the combustion reaction. The constant fraction (χ) is named the burning efficiency and represents an important tool in assessing the potential of in situ burning as a counter-measure to an oil spill. By matching the characteristic thermal penetration length scale for the fuel/water system and an equivalent single layer system, a combined thermal diffusivity can be calculated and used to obtain an analytical solution for the burning rate. Theoretical expressions were correlated with crude oil and heating oil, for a number of pool diameters and initial fuel layer thickness. Experiments were also conducted with emulsified and weathered crude oil. The simple analytical expression describes well the effects of pool diameter and initial fuel layer thickness permitting a better observation of the effects of weathering, emulsification and net heat feedback to the fuel surface. Experiments showed that only a small fraction of the heat released by the flame is retained by the fuel layer and water bed (of the order of 1%). Ignition has been studied to provide a tool that will serve to assess a fuels ease to ignite under conditions that are representative of oil spills. Two different techniques are used, piloted ignition when the fuel is exposed to a radiant heat flux and flash point as measured by the ASTM D56 Tag Closed Cup Test. Two different crude oils were used for these experiments, ANS and Cook Inlet. Crude oils were tested in their natural state and at different levels of weathering, showing that piloted ignition and flash point are strong functions of weathering level.  相似文献   

6.
7.
This paper discusses processes and factors for estimating time period windows of in situ burning of spilled oil at sea. Time-periods of in situ burning of Alaska North Slope (ANS) crude oil are estimated using available data. Three crucial steps are identified. The First Step is to determine the time it takes for the evaporative loss to reach the known or established limitation for evaporation and compare this time-period with estimated time of ignition at the ambient wind and sea temperatures. The Second Step is to determine the water up-take of the spilled oil and compare it with the known or established limitation for water-in-oil content. The Third Step is to determine the necessary heat load from the igniter to bring the surface temperature of the spilled oil to its flash point temperature so that it will burn at the estimated time period for ignition of the slick.  相似文献   

8.
In situ burning is an oil spill response technique or tool that involves the controlled ignition and burning of the oil at or near the spill site on the surface of the water or in a marsh (see Lindau et al., this volume). Although controversial, burning has been shown on several recent occasions to be an appropriate oil spill countermeasure. When used early in a spill before the oil weathers and releases its volatile components, burning can remove oil from the waters surface very efficiently and at very high rates. Removal efficiencies for thick slicks can easily exceed 95% (Advanced In Situ Burn Course, Spiltec, Woodinville, WA, 1997). In situ burning offers a logistically simple, rapid, inexpensive and if controlled a relatively safe means for reducing the environmental impacts of an oil spill. Because burning rapidly changes large quantities of oil into its primary combustion products (water and carbon dioxide), the need for collection, storage, transport and disposal of recovered material is greatly reduced. The use of towed fire containment boom to capture, thicken and isolate a portion of a spill, followed by ignition, is far less complex than the operations involved in mechanical recovery, transfer, storage, treatment and disposal (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994).However, there is a limited window-of-opportunity (or time period of effectiveness) to conduct successful burn operations. The type of oil spilled, prevailing meteorological and oceanographic (environmental) conditions and the time it takes for the oil to emulsify define the window (see Buist, this volume and Nordvik et al., this volume). Once spilled, oil begins to form a stable emulsion: when the water content exceeds 25% most slicks are unignitable. In situ burning is being viewed with renewed interest as a response tool in high latitude waters where other techniques may not be possible or advisable due to the physical environment (extreme low temperatures, ice-infested waters), or the remoteness of the impacted area. Additionally, the magnitude of the spill may quickly overwhelm the deployed equipment necessitating the consideration of other techniques in the overall response strategy (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994; Proceedings of the In Situ Burning of Oil Spills Workshop. NIST. SP934. MMS. 1998, p. 31; Basics of Oil Spill Cleanup, Lewis Publishers, Washington, DC, 2001, p. 233). This paper brings together the current knowledge on in situ burning and is an effort to gain regulatory acceptance for this promising oil spill response tool.  相似文献   

9.
An experimental technique has been developed to study systematically the ignition, flame spread and mass burning characteristics of liquid fuels spilled on a water bed. The final objective of this work is to provide a tool that will serve to assess a fuel's ease of ignition, spread and sustaining a flame, thus, helping to better define the combustion parameters that affect in situ burning of oil spills.  相似文献   

10.
Most response plans for in situ burning of oil at sea call for the use of a fire-resistant boom to contain the oil during a burn. Presently, there is no standard method for the user of fire-resistant boom to evaluate the anticipated performance of different booms. The American Standard for Testing Materials (ASTM) F-20 Committee has developed a draft standard, `Standard Guide for in situ Burning of Oil Spills on Water: Fire-Resistant Containment Boom'; however, the draft provides only general guidelines and does not specify the details of the test procedure. Utilizing the guidelines in the draft standard, a second series of experiments was conducted to evaluate a protocol for testing the ability of fire-resistant booms to withstand both fire and waves.  相似文献   

11.
Most response plans for in situ burning of oil at sea call for the use of a fire-resistant boom to contain the oil during a burn. Presently, there is no standard method for the user of a fire-resistant boom to evaluate the anticipated performance of different booms. The ASTM F-20 committee has developed a draft standard, “Standard Guide for in situ Burning of Oil Spills on Water: Fire-Resistant Containment Boom”; however, the draft provides only general guidelines and does not specify the details of the test procedure. Utilizing the guidelines in the draft standard, a series of experiments were conducted to evaluate a protocol for testing the ability of fire-resistant booms to withstand both fire and waves.  相似文献   

12.
SINTEF Applied Chemistry has been working in the field of in situ burning since 1988, beginning with the first open water testing of the 3M fire proof boom which took place on Spitsbergen. In recent years, the focus of SINTEF's research activities in this area has been on the burning of emulsions. An experimental programme was initiated by NOFO in 1990 to study the in situ burning of water-in-oil (w/o) emulsions, as part of a wider NOFO programme ‘Oil spill contingency in Northern and Arctic waters’ (ONA). The research conducted under this programme has addressed many areas of in situ burning including:
  • •• study of processes governing burning emulsions
  • •• development of ignition techniques for emulsions
  • •• effect of environmental conditions on burning
  • •• burning crude oil and emulsions in broken ice
  • •• uncontained burning of crude oil and emulsions.
  相似文献   

13.
During the period of 22 August–12 October 1998, seven commercial fire booms were involved in burn testing at the US Coast Guard Fire and Safety Test Detachment Facility in Mobile, Alabama in accordance with the proposed protocol, American Society for Testing and Materials-F20. Four of the seven booms survived the test sequence and were shipped from Mobile, Alabama to the Minerals Management Service’s OHMSETT facility for additional tests including first loss, gross loss, tow speed, oil loss rate, and critical tow speed. The four booms showed the same trend in response to various wave conditions; the long sinusoidal waves improved containment performance and the short choppy waves degraded performance. One of the four booms achieved slightly higher first and gross oil loss rate tests. One boom demonstrated superior stability at high tow speeds. The results of this test report are consistent with the evaluation of fire booms that had been previously tested at OHMSETT, but also show a slight increase in performance. The tests indicate that the existing fire booms can contain oil in currents up to 1 knot and in various wave conditions after being exposed to multiple burns. This information will be used by the Coast Guard to develop policies and procedures for the in situ burning (ISB) of oil during a spill.  相似文献   

14.
This study evaluated the feasibility of conducting in situ burning (ISB) using current technology on post-1967 major oil spills over 10 000 barrels in North America and over 50 000 barrels in South America and Europe. A diverse set of 141 spills representing various combinations of parameters affecting spill responses (e.g., spill size, oil type, weather conditions, sea temperature, and geographic location) were evaluated using four “Phase I” criteria: Distance to populated area, oil weathering, logistics, and weather conditions. In Phase I, a spill that failed to meet one of the four criteria was considered an “unsuccessful” candidate for ISB. In total, 47 of the 141 spills passed the Phase I analysis. The potential effect of the plume on populated areas was the most significant of the four Phase I criteria; 59 of the 141 spills did not pass Phase I because the incident occurred near a sizable city. Spills that met all four criteria were further evaluated using a “Phase II” analysis that applied additional criteria and considered individual spill circumstances to determine if the spill should be rated as a “successful”, “marginal call”, or “unsuccessful” ISB candidate. Fourteen spills were ultimately determined successful in the Phase II analysis, and 12 were designated marginal calls.  相似文献   

15.
A series of 14 mesoscale burns were conducted in 1991 to study various aspects of oil burning in situ. Extensive sampling and monitoring of these burns were conducted to determine the emissions. This was done at two downwind ground stations, one upwind ground station and in the smoke plume using a blimp and a remote-controlled helicopter. Particulate samples in air were taken and analyzed for polycyclic aromatic hydrocarbons (PAHs). PAHs were found to be lower in the soot than in the starting oil. Metals in the oil were found concentrated in the residue and could not be measured in soot samples using conventional industrial hygiene sampling techniques. Particulates in the air were measured by several means and found to be greater than recommended exposure levels only up to 150 m downwind at ground level. Combustion gases including carbon dioxide, sulphur dioxide and carbon monoxide did not reach exposure level maximums. These gases were emitted over a broad area around the fire and are not directly associated with the plume trajectory. Volatile organic compound (VOCs) emissions are extensive from fires, but the levels are less than those emitted from a non-burning test spill. Over 50 compounds were identified and quantified, several at possible levels of concern up to 200 m downwind. Water under the burns was analyzed; no analytes of concern could be found at the detection levels of the methods. The burn residue was analyzed for the same compounds as the air particulate samples. The residue contained elevated amounts of metals. PAHs were at a lower concentration in the residue than in the starting oil, however there is a slight differential concentration increase in some higher molecular weight species. Overall, indications from these mesoscale trials are that emissions from in situ burning are low in comparison to other sources of emissions and result in concentrations of air contaminants that are below exposure limits beyond 500 m downwind.  相似文献   

16.
The burning rate of a slick of oil on a water bed is calculated by a simple expression derived from a one-dimensional heat conduction equation. Heat feedback from the flame to the surface is assumed to be a constant fraction of the total energy released by the combustion reaction. The constant fraction (χ) is named the burning efficiency and represents an important tool in assessing the potential of in situ burning as a counter-measure to an oil-spill. The total heat release, as a function of the pool diameter, is obtained from an existing correlation. It is assumed that radiative heat is absorbed close to the fuel surface, that conduction is the dominant mode of heat transfer in the liquid phase and that the fuel boiling temperature remains constant. By matching the characteristic thermal penetration length scale for the fuel/water system and an equivalent single layer system, a combined thermal diffusivity can be calculated and used to obtain an analytical solution for the burning rate. Theoretical expressions were correlated with crude oil and heating oil, for a number of pool diameters and initial fuel layer thickness. Experiments were also conducted with emulsified and weathered crude oil. The simple analytical expression describes well the effects of pool diameter and initial fuel layer thickness permitting a better observation of the effects of weathering, emulsification and net heat feedback to the fuel surface. Experiments showed that only a small fraction of the heat released by the flame is retained by the fuel layer and water bed (of the order of 1%). The effect of weathering on the burning rate decreases with the weathering period and that emulsification results in a linear decrease of the burning rate with water content.  相似文献   

17.
The Egyptian national marine oil pollution contingency plan was urgently initiated after the Nabila oil spill in 1982, to provide an estimate of its environmental effects on the Egyptian Red Sea coastal areas and to determine geomorphological features and cuastal processes, together with physical, chemical and biological baseline data for this tropical environment.The ‘Vulnerability Index’ (VI) was applied to evaluate and calibrate the effect of the Nabila oil spill on the Egyptian Red Sea Coastal area. A detailed in situ coastal survey was conducted during two visits in November 1982 and May 1983 to 80 shore sites from Suez to Ras Banas to monitor the oil pollution and to apply the ‘Vulnerability Index’. A comparative assessment of the index over time by comparing it with a quick ground inspection in November 1993 to some sites to evaluate the applicability of this index for oil spills in such environments. In addition, the physical effects of fresh and weathered crude oil and/with dispersant on water filtration by different beaches were preliminary studied.The geomorphological/Vulnerability Index results show that most of the Egyptian Red Sea coastal environments have medium to high vulnerability to immediate and medium term oil spill damage. The oil pollution spread estimated to be 250 km south of the oil spill and about 200 km north of it. The quantity of oil along the shoreline was reduced by about 60% due to natural and authorities clean up. The third survey after 11 years showed that the VI could be used as a predictive tool for assessment of oil spill effects on such tropical environments.  相似文献   

18.
A major problem of radiometric sensors in the detection of oil spills on the sea is differentiating the oil spill from other objects on the water surface such as rough areas, areas with warm and cold streams, oil-water emulsions, areas with seaweed, etc. A procedure to convert antenna temperatures to brightness temperatures and then to the oil thickness is described. Generally, a calibration procedure at the start of each experiment is needed. In order to develop and test these procedures, a polarization method has been designed for remotely detecting an oil slick. This required building three radiometers operating in the millimeter-wave bands (W, Wa, ku) as well as associated laboratory test equipment. Experimental results, obtained in the laboratory and in an outdoor test facility, conform well with theoretical computations using an air-oil-water stratified layer model. This new method of microwave radiometry by measuring its polarization contrasts at two orthogonal polarizations is a next step in the development of microwave sensors for detecting oil spills.  相似文献   

19.
Experimental oil spills on three mixed-sediment beaches in Svalbard, Norway, were designed to evaluate the effectiveness of in situ shoreline cleaning treatments to accelerate natural recovery. These were: sediment relocation (surf washing), mixing (tilling), bioremediation (fertilizer application), and bioremediation combined with mixing. Additionally, natural attenuation was studied as a treatment option. An intermediate fuel oil was applied to the sediment surface in the upper intertidal zone at three experimental sites, each of which had different sediment characteristics and wave-energy exposure. Over a 400-day period, the experiments quantified oil removal, documented changes in the physical character of the beach as well as oil fate and behaviour, assessed toxicity effects associated with treatment, and validated oil-mineral aggregate formation as a result of the selected treatment techniques. The three sites were chosen based on significant differences, and each treatment was quantitatively compared only with other treatments at that site.This paper describes the physical location and the experimental design of the field trials. Some of the key issues that were addressed in the design included: the methodology for application of oil, the application of treatment techniques, the realistic simulation of real-world conditions, and the sampling protocols to overcome sediment and oiling heterogeneity typical of mixed-sediment beaches in order to allow quantitative comparisons of the treatments.  相似文献   

20.
Estimates of occurrence rates for offshore oil spills are useful for analyzing potential oil-spill impacts and for oil-spill response contingency planning. With the implementation of the Oil Pollution Act of 1990 (US Public Law 101-380, August 18, 1990), estimates of oil-spill occurrence became even more important to natural resource trustees and to responsible parties involved in oil and gas activities.Oil-spill occurrence rate estimates have been revised based on US Outer Continental Shelf (US OCS) platform and pipeline spill data (1964 through 1999), worldwide tanker spill data (1974 through 1999), and barge spill data for US waters (1974–1999). These spill rates are expressed and normalized in terms of number of spills per volume of crude oil handled. All estimates of spill occurrence rates were restricted to spills greater than or equal to 1000 barrels (159 m3, 159 kl, 136 metric tonnes, 42,000 US gallons).The revisions compared to the previously published rates calculated through 1992 (Anderson and LaBelle, 1994) indicate that estimates for the US OCS platform spill occurrence rates continue to decline, primarily because no spills have occurred since 1980. The US OCS pipeline spill occurrence rates for spills greater than or equal to 1000 barrels remained essentially unchanged. However, the rate for larger OCS pipeline spills (greater than or equal to 10,000 barrels) has decreased significantly. Worldwide tanker spill rates, rates for tanker spills in US waters, and rates for barge spills in US waters decreased significantly. The most recent 15-year estimates for 1985–1999 (compared to rates for the entire data series) showed that rates for US OCS platforms, tankers, and barges continued to decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号