首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pesticide degradates account for a significant portion of the pesticide load in surface water. Because pesticides with similar structures may degrade to the same degradate, it is important to distinguish between different sources of parent compounds that have different regulatory and environmental implications. A discrimination diagram, which is a sample plot of chemical data that differentiates between different parent compounds, was used for the first time to distinguish whether sources other than atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) contributed the chlorinated degradate, deisopropylatrazine (DIA; 6-chloro-N-ethyl-1,3,5-triazine-2,4-diamine) to the Iroquois and Delaware Rivers. The concentration ratio of deisopropylatrazine to deethylatrazine [6-chloro-N-(1-methylethyl)1,3,5-triazine-2,4-diamine], called the D2R, was used to discriminate atrazine as a source of DIA from other parent sources, such as cyanazine (2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropionitrile) and simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4diamine). The ratio of atrazine to cyanazine (ACR) used in conjunction with the D2R showed that after atrazine, cyanazine was the main contributor of DIA in surface water. The D2R also showed that cyanazine, and to a much lesser extent simazine, contributed a considerable amount (approximately 40%) of the DIA that was transported during the flood of the Mississippi River in 1993. The D2R may continue to be a useful discriminator in determining changes in the nonpoint sources of DIA in surface water as cyanazine is currently being removed from the market.  相似文献   

2.
Tobit regression models were developed to predict the summed concentration of atrazine [6-chloro--ethyl--(1-methylethyl)-1,3,5-triazine-2,4-diamine] and its degradate deethylatrazine [6-chloro--(1-methylethyl)-1,3,5,-triazine-2,4-diamine] (DEA) in shallow groundwater underlying agricultural settings across the conterminous United States. The models were developed from atrazine and DEA concentrations in samples from 1298 wells and explanatory variables that represent the source of atrazine and various aspects of the transport and fate of atrazine and DEA in the subsurface. One advantage of these newly developed models over previous national regression models is that they predict concentrations (rather than detection frequency), which can be compared with water quality benchmarks. Model results indicate that variability in the concentration of atrazine residues (atrazine plus DEA) in groundwater underlying agricultural areas is more strongly controlled by the history of atrazine use in relation to the timing of recharge (groundwater age) than by processes that control the dispersion, adsorption, or degradation of these compounds in the saturated zone. Current (1990s) atrazine use was found to be a weak explanatory variable, perhaps because it does not represent the use of atrazine at the time of recharge of the sampled groundwater and because the likelihood that these compounds will reach the water table is affected by other factors operating within the unsaturated zone, such as soil characteristics, artificial drainage, and water movement. Results show that only about 5% of agricultural areas have greater than a 10% probability of exceeding the USEPA maximum contaminant level of 3.0 μg L. These models are not developed for regulatory purposes but rather can be used to (i) identify areas of potential concern, (ii) provide conservative estimates of the concentrations of atrazine residues in deeper potential drinking water supplies, and (iii) set priorities among areas for future groundwater monitoring.  相似文献   

3.
Occurrence and fate of 45 pesticides and 40 pesticide degradates were investigated in four contrasting agricultural settings--in Maryland, Nebraska, California, and Washington. Primary crops included corn at all sites, soybeans in Maryland, orchards in California and Washington, and vineyards in Washington. Pesticides and pesticide degradates detected in water samples from all four areas were predominantly from two classes of herbicides--triazines and chloroacetanilides; insecticides and fungicides were not present in the shallow ground water. In most samples, pesticide degradates greatly exceeded the concentrations of parent pesticide. In samples from Nebraska, the parent pesticide atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] was about the same concentration as the degradate, but in samples from Maryland and California atrazine concentrations were substantially smaller than its degradate. Simazine [6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine], the second most detected triazine, was detected in ground water from Maryland, California, and Washington. Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] rarely was detected without its degradates, and when they were detected in the same sample metolachlor always had smaller concentrations. The Root-Zone Water-Quality Model was used to examine the occurrence and fate of metolachlor at the Maryland site. Simulations accurately predicted which metolachlor degradate would be predominant in the unsaturated zone. In analyses of relations among redox indicators and pesticide variance, apparent age, concentrations of dissolved oxygen, and excess nitrogen gas (from denitrification) were important indicators of the presence and concentration of pesticides in these ground water systems.  相似文献   

4.
Vegetated filter strips (VFS) potentially reduce the off-site movement of herbicides from adjacent agricultural fields by increasing herbicide mass infiltrated (Minf) and mass adsorbed (Mas) compared with bare field soil. However, there are conflicting reports in the literature concerning the contribution of Mas to the VFS herbicide trapping efficiency (TE). Moreover, no study has evaluated TE among atrazine (6-chloro-N-ethyl-N'-isopropyl-[1,3,5]triazine-2,4-diamine) and atrazine metabolites. This study was conducted to compare TE, Minf, and Mas among atrazine, diaminoatrazine (DA, 6-chloro[1,3,5]triazine-2,4-diamine), deisopropylatrazine (DIA, 6-chloro-N-ethyl-[1,3,5]triazine-2,4-diamine), desethylatrazine (DEA, 6-chloro-N-isopropyl-[1,3,5]triazine-2,4-diamine), and hydroxyatrazine (HA, 6-hydroxy-N-ethyl-N'-isopropyl-[1,3,5]triazine-2,4-diamine) in a buffalograss VFS. Runoff was applied as a point source upslope of a 1- x 3-m microwatershed plot at a rate of 750 L h(-1). The point source was fortified at 0.1 microg mL(-1) atrazine, DA, DIA, DEA, and HA. After crossing the length of the plot, water samples were collected at 5-min intervals. Water samples were extracted by solid phase extraction and analyzed by high performance liquid chromatography (HPLC) photodiode array detection. During the 60-min simulation, TE was significantly greater for atrazine (22.2%) compared with atrazine metabolites (19.0%). Approximately 67 and 33% of the TE was attributed to Minf and Mas, respectively. These results demonstrate that herbicide adsorption to the VFS grass, grass thatch, and/or soil surface is an important retention mechanism, especially under saturated conditions. Values for Mas were significantly higher for atrazine compared with atrazine's metabolites. The Mas data indicate that atrazine was preferentially retained by the VFS grass, grass thatch, and/or soil surface compared with atrazine's metabolites.  相似文献   

5.
Better management practices can counter deterioration of ground water quality. From 1991 through 1996 the influence of improved irrigation practices on ground water pesticide contamination was assessed at the Nebraska Management Systems Evaluation Area. Three 13.4-ha corn (Zea mays L.) fields were studied: a conventional furrow-irrigated field, a surge-irrigated field and a center pivot-irrigated field, and a center pivot-irrigated alfalfa (Medicago sativa L.) field. The corn fields received one identical banded application of Bicep (atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] + metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamidel) annually; the alfalfa field was untreated. Ground water samples were collected three times annually from 16 depths of 31 multilevel samplers. Six years of sample data indicated that a greater than 50% reduction in irrigation water on the corn management fields lowered average atrazine concentrations in the upper 1.5 m of the aquifer downgradient of the corn fields from approximately 5.5 to <0.5 microg L(-1). Increases in deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to atrazine molar ratios indicated that reducing water applications enhanced microbial degradation of atrazine in soil zones. The occurrence of peak herbicide loading in ground water was unpredictable but usually was associated with heavy precipitation within days of herbicide application. Focused recharge of storm runoff that ponded in the surge-irrigated field drainage ditch, in the upgradient road ditch, and at the downgradient end of the conventionally irrigated field was a major mechanism for vertical transport. Sprinkler irrigation technology limited areas for focused recharge and promoted significantly more soil microbial degradation of atrazine than furrow irrigation techniques and, thereby, improved ground water quality.  相似文献   

6.
A surface drinking water monitoring program for four corn (Zea mays L.) herbicides was conducted during 1995-2001. Stratified random sampling was used to select 175 community water systems (CWSs) within a 12-state area, with an emphasis on the most vulnerable sites, based on corn intensity and watershed size. Finished drinking water was monitored at all sites, and raw water was monitored at many sites using activated carbon, which was shown capable of removing herbicides and their degradates from drinking water. Samples were collected biweekly from mid-March through the end of August, and twice during the off-season. The analytical method had a detection limit of 0.05 microg L(-1) for alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide] and 0.03 microg L(-1) for acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide]. Of the 16528 drinking water samples analyzed, acetochlor, alachlor, atrazine, and metolachlor were detected in 19, 7, 87, and 53% of the samples, respectively. During 1999-2001, samples were also analyzed for the presence of six major degradates of the chloroacetanilide herbicides, which were detected more frequently than their parent compounds, despite having higher detection limits of 0.1 to 0.2 microg L(-1). Overall detection frequencies were correlated with product use and environmental fate characteristics. Reservoirs were particularly vulnerable to atrazine, which exceeded its 3 microg L(-1) maximum contaminant level at 25 such sites during 1995-1999. Acetochlor annualized mean concentrations (AMCs) did not exceed its mitigation trigger (2 microg L(-1)) at any site, and comparisons of observed levels with standard measures of human and ecological hazards indicate that it poses no significant risk to human health or the environment.  相似文献   

7.
The Acetochlor Registration Partnership (ARP) conducted a 7-yr ground water monitoring program at a total of 175 sites in seven states: Illinois, Indiana, Iowa, Kansas, Minnesota, Nebraska, and Wisconsin. While acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] was the primary focus, the analytical methods also quantified alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide], and two classes of soil degradates for acetochlor, alachlor, and metolachlor. Ground water samples were collected monthly for five years and quarterly for two additional years. All samples were analyzed for the presence of parent herbicides, and degradates were monitored during the last three years. Parent acetochlor was detected above 0.1 microg L(-1) in three or more samples at just seven sites. Alachlor and metolachlor were also rarely detected, but atrazine was detected in 36% of all samples analyzed. Even more widespread were the tertiary amide sulfonic acid (ethanesulfonic acid, ESA) degradates of acetochlor, alachlor, and metolachlor, which were detected at 81, 76, and 106 sites, respectively. The other class of monitored soil degradates (oxanilic acid, OXA) was detected less frequently, at 26, 16, and 63 sites for acetochlor OXA, alachlor OXA, and metolachlor OXA, respectively. The geographic distribution of detections did not follow the pattern originally expected when the study began. Rather than being a function primarily of soil texture, the detection of these herbicides in shallow ground water was related to site-specific factors associated with local topography, the occurrence of surface water drainage features, irrigation practices, and the vertical positioning of the well screen.  相似文献   

8.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] have been found with increasing occurrence in rivers and streams. Their continued use will require changes in agricultural practices. We compared water quality from four crop-tillage treatments: (i) conventional moldboard plow (MB), (ii) MB with ryegrass (Lolium multiflorum Lam.) intercrop (IC), (iii) soil saver (SS), and (iv) SS + IC; and two drainage control treatments, drained (D) and controlled drainage-subirrigation (CDS). Atrazine (1.1 kg a.i. ha-1), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one] (0.5 kg a.i. ha-1), and metolachlor (1.68 kg a.i. ha-1) were applied preemergence in a band over seeded corn (Zea mays L.) rows. Herbicide concentration and losses were monitored from 1992 to spring 1995. Annual herbicide losses ranged from < 0.3 to 2.7% of application. Crop-tillage treatment influenced herbicide loss in 1992 but not in 1993 or 1994, whereas CDS affected partitioning of losses in most years. In 1992, SS + IC reduced herbicide loss in tile drains and surface runoff by 46 to 49% compared with MB. The intercrop reduced surface runoff, which reduced herbicide transport. Controlled drainage-subirrigation increased herbicide loss in surface runoff but decreased loss through tile drainage so that total herbicide loss did not differ between drainage treatments. Desethyl atrazine [6-chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine] comprised 7 to 39% of the total triazine loss.  相似文献   

9.
Profiles of ground water pesticide concentrations beneath the Nebraska Management Systems Evaluation Area (MSEA) describe the effect of 20 yr of pesticide usage on ground water in the central Platte Valley of Nebraska. During the 6-yr (1991-1996) study, 14 pesticides and their transformation products were detected in 7848 ground water samples from the unconfined water table aquifer. Triazine and acetamide herbicides applied on the site and their transformation products had the highest frequencies of detection. Atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] concentrations decreased with depth and ground water age determined with 3H/3He dating techniques. Assuming equivalent atrazine input during the past 20 yr, the measured average changes in concentration with depth (age) suggest an estimated half-life of >10 yr. Hydrolysis of atrazine and deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to hydroxyatrazine [6-hydroxy-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] appeared to be the major degradation route. Aqueous hydroxyatrazine concentrations are governed by sorption on the saturated sediments. Atrazine was detected in the confined Ogallala aquifer in ultra-trace concentrations (0.003 microg L(-1)); however, the possibility of introduction during reverse circulation drilling of these deep wells cannot be eliminated. In fall 1997 sampling, metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] was detected in 57% of the 230 samples. Metolachlor oxanilic acid [(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl) amino]oxo-acetic acid] was detected in most samples. In ground water profiles, concentrations of metolachlor ethane sulfonic acid [2-[(ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxo-ethanesulfonic acid] exceeded those of deethylatrazine. Alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide] was detected in <1% of the samples; however, alachlor ethane sulfonic acid [2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid] was present in most samples (63%) and was an indicator of past alachlor use.  相似文献   

10.
Rainfall can transport herbicides from agricultural land to surface waters, where they become an environmental concern. Tile drainage can benefit crop production by removing excess soil water but tile drainage may also aggravate herbicide and nutrient movement into surface waters. Water management of tile drains after planting may reduce tile drainage and thereby reduce herbicide losses to surface water. To test this hypothesis we calculated the loss of three herbicides from a field with three water management systems: free drainage (D), controlled drainage (CD), and controlled drainage with subsurface irrigation (CDS). The effect of water management systems on the dissipation of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one), and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] in soil was also monitored. Less herbicide was lost by surface runoff from the D and CD treatments than from CDS. The CDS treatment increased surface runoff, which transported more herbicide than that from D or CD treatments. In one year, the time for metribuzin residue to dissipate to half its initial value was shorter for CDS (33 d) than for D (43 d) and CD (46 d). The half-life of atrazine and metolachlor were not affected by water management. Controlled drainage with subsurface irrigation may increase herbicide loss through increased surface runoff when excessive rain is received soon after herbicide application. However, increasing soil water content in CDS may decrease herbicide persistence, resulting in less residual herbicide available for aqueous transport.  相似文献   

11.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) is retained against leaching losses in soils principally by sorption to organic matter, but the mechanism of sorption has been a matter of controversy. Conflicting evidence exists for proton transfer, electron transfer, and hydrophobic interactions between atrazine and soil humus, but no data are conclusive. In this paper we add to the database by investigating the role of (i) hydroxyatrazine (6-hydroxy-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and (ii) hydrophobicity in the sorption of atrazine by Brazilian soil humic substances. We demonstrate, apparently for the first time, that hydroxyatrazine readily forms electron-transfer complexes with humic substances. These complexes probably are the cause of the well-known strong adsorption by humic acids and they may be the undetected cause of apparent electron-transfer complexes between soil organic matter and atrazine, whose transformation to the hydroxy form is facile. We also present evidence that supports the important contribution of hydrophobic interactions to the pH-dependent sorption of atrazine by humic substances.  相似文献   

12.
13.
The half-lives, degradation rates, and metabolite formation patterns of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] were determined in an anaerobic wetland soil incubated at 24 degrees C for 112 d. At 0, 7, 14, 28, 42, 56, and 112 d, the soil and water were analyzed for atrazine and metolachlor, and their major metabolites. The soil oxidation-reduction potential reached -200 mV after 14 d. Degradation reaction rates were first-order for atrazine in anaerobic soil and for metolachlor in the aqueous phase. Zero-order reaction rates were best fit for atrazine in the aqueous phase and metolachlor in anaerobic soil. In anaerobic soil, the half-life was 38 d for atrazine and 62 d for metolachlor. In the aqueous phase above the soil, the half-life was 86 d for atrazine and 40 d for metolachlor. Metabolites detected in the anaerobic soil were hydroxyatrazine and deethylatrazine for atrazine, and relatively small amounts of ethanesulfonic acid and oxanilic acid for metolachlor. Metabolites detected in the aqueous phase above the soil were hydroxyatrazine, deethylatrazine, and deisopropylatrazine for atrazine, and ethanesulfonic acid and oxanilic acid for metolachlor. Concentrations of metabolites in the aqueous phase generally peaked within the first 25 d and then declined. Results indicate that atrazine and metolachlor can degrade under strongly reducing conditions found in wetland soils. Metolachlor metabolites, ethanesulfonic acid, and oxanilic acid are not significantly formed under anaerobic conditions.  相似文献   

14.
DIMBOA (3,4-dihydro-2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one), a major benzoxazinone of Poaceae plants, was isolated and purified from corn seedlings. The effect of isolated and purified DIMBOA on the degradation of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine], and its toxic breakdown products, desethylatrazine [2-chloro-4-amino-6-(isopropylamino)-s-triazine; DEA] and desisopropylatrazine [2-chloro-4-(ethylamino)-6-amino-s-triazine; DIA], was studied in the absence of plants using batch experiments, while the effect of corn root exudates on these compounds was determined in hydroponic experiments. Degradation experiments were performed in the presence and absence of 50 microM, 1 mM, or 5 mM DIMBOA resulting in ratios of DIMBOA to pesticide of 1:1, 20:1, and 100:1. We observed a 100% degradation of atrazine to hydroxyatrazine within 48 h at a ratio of DIMBOA to atrazine of 100:1. DIMBOA had the largest effect on atrazine, while it was about three times less effective on DEA and DIA. Corn (Zea mays L. cv. LG 2185) was exposed to 10 mg L(-1) of either atrazine, DEA, or DIA for 11 d in a growth chamber experiment. Up to 4.3 micromol L(-1) d(-1) of hydroxyatrazine were formed in the nutrient solutions by plants exposed to atrazine, while the formation of hydroxylated metabolites from plants exposed to DEA and DIA was smaller and also delayed. The formation of hydroxylated metabolites increased in the solution with plant age in all atrazine, DEA, and DIA treatments. HMBOA (3,4-dihydro-2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3-one), the lactam precursor of DIMBOA, and a tentatively identified derivative of MBOA (2,3-dihydro-6-methoxy-benzoxazol-2-one) were detected in the corn root exudates. Mass balance calculations revealed that up to 30% of the disappearance of atrazine and DEA, and up to 10% of DIA removal from the solution medium in our study could be explained by the formation of hydroxylated metabolites in the solution itself. Our results show that higher plants such as corn have the potential to promote the hydrolysis of triazine residues in soils by exudation of benzoxazinones.  相似文献   

15.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) behavior was studied in four surface soils during incubations in laboratory conditions. Soils were chosen in relation to their cropping management (tillage and no tillage) and crop rotation system (continuous soybean [Glycine mar (L.) Merr.] and maize (Zea mays L.)-soybean rotation). A natural soil under brushwood was sampled as a reference. Atrazine use in field conditions was associated with maize cropping, thus only one soil received atrazine every other year. Atrazine behavior was characterized through the balance of 14C-U-ring atrazine radioactivity among the mineralized fraction, the extractable fraction, and the nonextractable bound residues. Soil organic matter capacity to form bound residues was characterized using soil size fractionation. Accelerated atrazine mineralization was only observed in the soil receiving atrazine in field conditions. Atrazine application every other year was enough to develop a microflora adapted to triazine ring mineralization. Bound residue formation was rapid and increased with soil organic matter content. The coarsest soil size fractions (2000-200 and 200-50 microm) containing the nonhumified organic matter presented the highest capacity to form bound residues. No effect of tillage system was observed, probably because of the uniform sampling depth at 20 cm, hiding the stratification pattern of soil organic matter in non-tilled soils.  相似文献   

16.
A field study was conducted to determine the fate of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) within the root zone (0 to 90 cm) of a sandy soil cropped with sorghum [Sorghum bicolor (L.) Moench] in Gainesville, Florida. Atrazine was uniformly applied at a rate of 1.12 kg ai. ha(-1) to a sorghum crop under moderate irrigation, optimum irrigation, and no irrigation (rainfed), 2 d after crop emergence. Bromide as a tracer for water movement was applied to the soil as NaBr at a rate of 45 kg Br ha(-1), 3 d before atrazine application. Soil water content, atrazine, and Br concentrations were determined as a function of time using soil samples taken from the root zone. Atrazine sorption coefficients and degradation rates were determined by depth for the entire root zone in the laboratory. Atrazine was strongly adsorbed within the upper 30 cm of soil and most of the atrazine recovered from the soil during the growing season was in that depth. The estimated half-life for atrazine was 32 d in topsoil to 83 d in subsoil. Atrazine concentration within the root zone decreased from 0.44 kg ai. ha(-1) 2 days after application (DAA) to 0.1 kg a.i. ha(-1) 26 DAA. Negligible amounts of atrazine (approximately 5 microg kg(-1)) were detected below the 60-cm soil depth by 64 DAA. Most of the decrease in atrazine concentration in the root zone over time was attributed to degradation. In contrast, all applied bromide had leached past the 60-cm soil depth during the same time interval.  相似文献   

17.
An 8-yr study was conducted to better understand factors influencing year-to-year variability in field-scale herbicide volatilization and surface runoff losses. The 21-ha research site is located at the USDA-ARS Beltsville Agricultural Research Center in Beltsville, MD. Site location, herbicide formulations, and agricultural management practices remained unchanged throughout the duration of the study. Metolachlor [2-chloro--(2-ethyl-6-methylphenyl)--(2-methoxy-1-methylethyl) acetamide] and atrazine [6-chloro--ethyl--(1-methylethyl)-1,3,5-triazine-2,4-diamine] were coapplied as a surface broadcast spray. Herbicide runoff was monitored from a month before application through harvest. A flux gradient technique was used to compute volatilization fluxes for the first 5 d after application using herbicide concentration profiles and turbulent fluxes of heat and water vapor as determined from eddy covariance measurements. Results demonstrated that volatilization losses for these two herbicides were significantly greater than runoff losses ( < 0.007), even though both have relatively low vapor pressures. The largest annual runoff loss for metolachlor never exceeded 2.5%, whereas atrazine runoff never exceeded 3% of that applied. On the other hand, herbicide cumulative volatilization losses after 5 d ranged from about 5 to 63% of that applied for metolachlor and about 2 to 12% of that applied for atrazine. Additionally, daytime herbicide volatilization losses were significantly greater than nighttime vapor losses ( < 0.05). This research confirmed that vapor losses for some commonly used herbicides frequently exceeds runoff losses and herbicide vapor losses on the same site and with the same management practices can vary significantly year to year depending on local environmental conditions.  相似文献   

18.
The physical and chemical parameters controlling the movement of atrazine (6-chloro-N2-ethyl-N4-isopropyl-l,3,5-triazine-2,4-diamine; 98.8%) and prometryn [N,N'-bis(1-methylethyl)-6-(methylthio)-l,3,5triazine-2,4-diamine; 99.5%] were investigated in columns infiltrated with treated effluent under unsaturated transient conditions and subjected to drying events at 22 or 60 degrees C followed by rewetting. Three soils varying in soil pH and texture and three solutions were used. The infiltrating solutions consisted of either a CaCl2 matrix (CC), a swine waste-derived lagoon effluent (SW), or a simulated buffer solution (SB) representative of the element composition and pH of the SW but with no dissolved organic matter. Several parameters were monitored including leachate triazine concentrations, pH, dissolved organic carbon (DOC), inorganic carbon, and flow rates. Compared with CC, application of SW and SB increased column leachate pH, enhanced dissolution of organic carbon and particle dispersion, and decreased average flow rates, which allowed for increased desorption time. The coupled effect of these processes enhanced movement of triazines in some cases, with SW generally having the greatest effect. The individual effect of increased pH was more pronounced for prometryn (pKa=4.05) versus atrazine (pKa=1.66), and most dramatic for the soil with the lowest initial pH. High-temperature drying, which simulated intensive evaporation, further enhanced the dissolution of soil organic matter and the reduction in leachate flow rates with SW and SB applications; however, the net effect under the experimental conditions employed varied with soil type. Relative to low-temperature drying, high-temperature drying in the silty clay loam-packed columns reduced pesticide migration.  相似文献   

19.
Terbuthylazine [N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine] degradation pathways in agricultural soils were evaluated by following the appearance and mobility of its main transformation products: dealkylated and hydroxylated derivatives. Three experimental degradation studies in open field were performed in different hydraulic conditions: constant hydraulic head on topsoil, achieved to simulate the highest-risk situation for the aquifer, intermittent artificial precipitation to simulate a medium-risk situation; and natural precipitation to reproduce the lowest-risk condition. Concentrations of terbuthylazine transformation products derived from dealkylation and hydroxylation reactions were measured in leachates and soil samples collected during the three experiments. Desethylterbuthylazine (DET) and deethylterbuthylazine-2-hydroxide [DETH; 4-amino-6-terbutylamino-(1,3,5)-triazine-2-OH] were found to be the highest-leaching compounds and therefore can be considered as potential pollutants for aquifer contamination.  相似文献   

20.
Nonequilibrium disc-flow techniques may better reproduce dynamic soil-pesticide interactions than traditional batch sorption studies. Batch kinetic and equilibrium experiments and dual-label thin-disc flow experiments were conducted with atrazine (6-chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine) and imazaquin [2-(4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl)-3-quinolinecarboxylic acid] using a Demopolis silt loam (loamy-skeletal, carbonatic, thermic, shallow Typic Udorthent; 8% clay, 62 g kg(-1) organic matter, 7.6 pH). Batch kinetic studies with both herbicides revealed an almost instantaneous rapid phase and a much slower gradual phase. The rapid phase was complete after 5 min and equilibrium was reached at 24 h. The rapid phase accounted for 74% and 12 to 30% of the total amounts adsorbed for atrazine and imazaquin, respectively. The sorption of both the rapid and 24-h isotherms for each herbicide best fit the Freundlich equation. The rapid and 24-h K(f) values of atrazine were 1.38 and 2.41, respectively, and the N value of both phases was approximately 0.93. For imazaquin, the rapid and 24-h K(f) values were 0.056 and 035, respectively, and the N value for the rapid phase of imazaquin was 0.71, compared with 0.86 for the 24-h isotherm. In the dual-label thin-disc flow experiments, the average partition coefficient for atrazine at the peak soil concentration point was 1.54. This value closely agreed with the observed rapid-phase K(f) value of 1.38. In contrast, the thin-disc flow experiments failed to detect any imazaquin retention. The thin-disc flow method can allow for a greater resolution of rapid sorption kinetics, which is impractical with batch studies. Along with dynamic partitioning data, the thin-disc flow method may provide kinetics data that may better complement environmental models than coefficients generated with batch techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号