首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纳米零价铁原位注入是六价铬污染地下水的有效修复技术之一。为验证其场地修复效果,在北京某电镀厂搬迁后的遗留六价铬污染场地,现场制备纳米铁并通过原位注入对场地内六价铬污染地下水进行原位修复现场中试研究。选取6 m×6 m实验场地,在地下水中六价铬污染浓度最高为2 mg·L-1的中心点设置注射井并在四周设置4口监测井。实验结果表明,原位注入纳米铁药剂具有良好修复效果,修复后该实验场地范围内地下水中六价铬浓度均低于地下水质量Ⅳ类标准0.1 mg·L-1,注射井中六价铬还原率达到99%。通过对注射井及监测井地下水中pH、溶解氧、氧化还原电位等检测指标进行跟踪监测和相关性分析,发现氧化还原电位与污染物浓度变化相关性最强,可以作为污染物变化的表征因子。该中试研究结果对于六价铬污染地下水的原位修复具有重要的参考价值。  相似文献   

2.
以2-膦酸丁烷-1,2,4三羧酸(PBTCA)为稳定剂,通过FeCl3.6H2O与NaBH4反应,利用液相还原法制备稳定纳米级零价铁颗粒(P-NZVI),并用透射电子显微镜(TEM)、扫描电子显微镜(SEM)及X射线衍射(XRD)进行表征,颗粒平均粒径为73 nm。考察了Cr(Ⅵ)溶液初始浓度、pH、NZVI投加量、温度等条件对Cr(Ⅵ)去除效果的影响,并与同等条件下不加稳定剂制备的纳米铁(N-NZVI)进行对比。结果表明:Cr(Ⅵ)的去除率随温度和纳米铁投加量增加而升高,随pH和Cr(Ⅵ)溶液初始浓度升高而降低。在相同实验条件下,P-NZVI对Cr(Ⅵ)的去除效果明显优于N-NZVI,表明改性后纳米铁在地表水原位修复领域具有较好的应用前景。  相似文献   

3.
Environmental Science and Pollution Research - Different methods, including the use of nanoscale zero-valent iron (NZVI), have been used to treat arsenic (As)-contaminated environments, with much...  相似文献   

4.
纳米零价铁颗粒除磷反应机理   总被引:2,自引:0,他引:2  
张颖纯  王伟 《环境工程学报》2015,9(5):2041-2047
从溶液化学与固相表征两方面对纳米零价铁(NZVI)去除水中磷酸根(PO43-)的机理进行初步探究。分别研究不同初始pH值、溶解氧(DO)对NZVI除磷效果的影响,结果表明,酸性环境(pH为3.0~7.0)有利于NZVI除磷,且初始pH值越低,磷去除率越高;好氧环境较厌氧环境更利于磷的去除,DO>8.0 mg/L时对磷酸根的去除率是厌氧条件(DO2等7种不同去除材料中以Ca(OH)2的共沉淀作用去除率最大(99.9%),NZVI次之(87.2%),表明NZVI除磷机理中还存在共沉淀作用。采用多种固相表征手段对NZVI除磷前后进行分析:扫描电子显微镜(SEM)显示反应后出现不规则颗粒;X射线衍射(XRD)表明Fe3(PO4)2是主要反应产物;X射线光电子能谱(XPS)分析未发现磷被还原成低价态。研究表明,NZVI可有效去除水中磷酸根,主要去除机理包括:NZVI对磷酸根的吸附作用、NZVI在水中腐蚀产生的Fe2+离子对磷酸根的化学沉淀作用及铁氢氧化物与磷酸根的共沉淀作用。  相似文献   

5.
以200目的天然凹凸棒土为原料,先对原土进行酸活化与微波改性,再以改性凹凸棒土为载体,采用液相还原法由FeCl3·6H2O和NaBH4制备改性凹凸棒土负载纳米铁。通过正交实验、扫描电镜(SEM)、能谱仪(EDS)及红外光谱(IR)对负载前后的凹凸棒土进行表征分析确定其最佳条件。并通过稳定性实验和去除实验对改性凹凸棒土负载纳米铁的性能分析。结果表明:改性凹凸棒土负载纳米铁的最佳条件是铁土比为2.5:1,酸浓度为3 mol·L-1,微波时间为6 min,微波功率为600 W,改性时间为24 h。改性凹凸棒土负载纳米铁在常规水处理环境中能稳定存在。对水中的Cr(Ⅵ)有良好的去除效果,去除率可达97.67%。  相似文献   

6.
The suitability of a granulated zero valent iron (ZVI) permeable reactive barrier (PRB) remediation strategy was investigated for tribromoethene (TriBE), cis-1,2-dibromoethene (c-DBE), trans-1,2-dibromoethene (t-DBE) and vinyl bromide (VB), via batch and large-scale column experiments that were subsequently analysed by reactive transport modelling.The brominated ethenes in both batch and large-scale column experiments showed rapid (compared to controls and natural attenuation) degradation in the presence of ZVI. In the large-scale column experiment, degradation half-lives were 0.35 days for TriBE, 0.50 days for c-DBE, 0.31 days for t-DBE and 0.40 days for VB, under site groundwater flow conditions, resulting in removal of brominated ethenes within the first 0.2 m of a 1.0 m thick ZVI layer, indicating that a PRB groundwater remediation strategy using ZVI could be used successfully.In the model simulations of the ZVI induced brominated ethene degradation, assuming a dominant reductive β-elimination pathway via bromoacetylene and acetylene production, simulated organic compound concentrations corresponded well with both batch and large-scale column experimental data. Changes of inorganic reactants were also well captured by the simulations. The similar ZVI induced degradation pathway of TriBE and TCE suggests that outcomes from research on ZVI induced TCE remediation could also be applied to TriBE remediation.  相似文献   

7.
通过批实验和柱实验研究了三氯乙烯(TCE)初始浓度、四氯乙烯(PCE)等对零价铁去除三氯乙烯的影响,并建立了三氯乙烯降解的反应动力学方程。结果表明:(1)零价铁对TCE具有较好的降解效果,反应符合准一级反应动力学方程,表观反应速率常数随TCE浓度的增加而减小;(2)在铁粉充足的条件下,TCE初始浓度对降解效果影响不显著,且TCE去除率皆可达到90%以上;(3)PCE的存在抑制了TCE的脱氯反应。PCE和TCE共存时,TCE的最大去除率仅为64.2%;TCE脱氯反应的表观反应速率明显降低,反应半衰期由TCE单独存在时的6.8~9.7 h增大到66 h~346.5 h。  相似文献   

8.
The use of nanoparticulate zero valent iron (NZVI) in the treatment of inorganic contaminants in landfill leachate and polluted plumes has been the subject of many studies, especially in temperate, developed countries. However, NZVI’s potential for reduction of chemical oxygen demand (COD) and treatment of metal ion mixtures has not been explored in detail. We investigated the efficiency of NZVI synthesized in the presence of starch, mercaptoacetic, mercaptosuccinic, or mercaptopropenoic acid for the reduction of COD, nutrients, and metal ions from landfill leachate in tropical Sri Lanka. Synthesized NZVI were characterized with X-ray diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), thermal gravimetric analysis, Fourier transform infrared spectroscopy (FTIR) and Brunauer–Emmett–Teller. Of the samples tested, Starch-NZVI (S-NZVI) and mercaptoacetic-NZVI (MA-NZVI) performed well for treatment both COD and metal mixture. The removal percentages for COD, nitrate-nitrogen, and phosphate from S-NZVI were 50, 88, and 99 %, respectively. Heavy metal removal was higher in S-NZVI (>95 %) than others. MA-NZVI, its oxidation products, and functional groups of its coating showed the maximum removal amounts for both Cu (56.27 mg g?1) and Zn (28.38 mg g?1). All mercapto-NZVI showed well-stabilized nature under FTIR and XRD investigations. Therefore, we suggest mercapto acids as better agents to enhance the air stability for NZVI since chemically bonded thiol and carbonyl groups actively participation for stabilization process.  相似文献   

9.
Multiple contaminant mixtures in groundwater may not efficiently be treated by a single technology if contaminants possess rather different properties with respect to sorptivity, solubility, and degradation potential. An obvious choice is to use sequenced units of the generally accepted treatment materials zero valent iron (ZVI) and granular activated carbon (GAC). However, as the results of this modelling study suggest, the required dimensions of both reactor units may strongly differ from those expected on the grounds of a contaminant-specific design. This is revealed by performing an analysis for a broad spectrum of design alternatives through numerical experiments for selected patterns of contaminant mixtures consisting of monochlorobenzene, tetrachloroethylene, trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-DCE), and vinyl chloride (VC). It is shown that efficient treatment can be achieved only if competitive sorption effects in the GAC unit as well as the formation of intermediate products in the ZVI unit are carefully taken into account. Cost-optimal designs turned out to vary extremely depending on the prevailing conditions concerning contaminant concentrations, branching ratios, and unit costs of both reactor materials. Where VC is the critical contaminant, due to high initial concentration or extensive production as an intermediate, two options are cost-effective: an oversized ZVI unit with an oversized GAC unit or a pure GAC reactor.  相似文献   

10.
付彧  赵娜  付瑾  崔岩山 《环境工程学报》2012,6(4):1393-1397
主要研究了纳米零价铁颗粒对土壤HCl浸提液中重金属Pb的去除效果。通过批实验探讨HCl浓度、纳米零价铁投入量以及处理时间对Pb去除率的影响。实验结果表明,纳米零价铁颗粒对浸提液中Pb的去除反应符合langmuir和freundlich等温吸附方程;反应遵循准一级反应动力学方程,标准化后的反应速率常数KSA=0.018 mL/(m2·min);反应30 min时,0.5 g纳米零价铁对1.0 mol/L的HCl所提取Pb(51.7 mg/L)的去除率达到91.8%。研究结果表明,纳米零价铁对土壤HCl浸提液中Pb具有良好去除效果,但相对于处理水溶液中的Pb,反应速率偏低。  相似文献   

11.
In the present study, controlled laboratory column experiments were conducted to understand the biogeochemical changes during the microbial sulfate reduction. Sulfur and oxygen isotopes of sulfate were followed during sulfate reduction in zero valent iron incubated flow through columns at a constant temperature of 20 ± 1 °C for 90 d. Sulfur isotope signatures show considerable variation during biological sulfate reduction in our columns in comparison to abiotic columns where no changes were observed. The magnitude of the enrichment in δ34S values ranged from 9.4‰ to 10.3‰ compared to initial value of 2.3‰, having total fractionation δS between biotic and abiotic columns as much as 6.1‰. Sulfur isotope fractionation was directly proportional to the sulfate reduction rates in the columns. Oxygen isotopes in this experiment seem less sensitive to microbial activities and more likely to be influenced by isotopic exchange with ambient water. A linear relationship is observed between δ34S and δ18O in biotic conditions and we also highlight a good relationship between δ34S and sulfate reduction rate in biotic columns.  相似文献   

12.
Nanoscale zero valent iron (NZVI) was immobilized on the organobentonite (CTMA-bent), so as to enhance the reactivity of NZVI and prevent its aggregation. This novel composite (NZVI/CTMA-Bent) was characterized by transmission electron microscope and X-ray diffraction. Good dispersion of NZVI particles on the bentonite was observed. Its performance on removing pentachlorophenol (PCP) was investigated by batch experiments. Results showed NZVI/CTMA-Bent could rapidly and completely dechlorinate PCP to phenol with an efficiency of 96.2%. It was higher than the sum (54.5%) of reduction by NZVI (31.5%) and adsorption by CTMA-Bent (23.0%) separately. The kinetic studies indicated the removal rate of PCP was positively related to the adsorption. We proposed that the adsorption of PCP by CTMA-Bent enhanced the mass transfer of PCP from aqueous to iron surface. Besides, NZVI/CTMA-Bent exhibited good stability and reusability, and CTMA-Bent could also reduce the amount of iron ions released into the solution.  相似文献   

13.
Chen YM  Li CW  Chen SS 《Chemosphere》2005,59(6):753-759
A fluidized zero valent iron (ZVI) reactor is examined for nitrate reduction. Using the system, the pH of solution can be maintained at optimal conditions for rapid nitrate reduction. For hydraulic retention times of 15 min, the nitrate reduction efficiency increases with increasing ZVI dosage. At ZVI loadings of 33 gl-1, results indicate that the nitrate removal efficiency increases from less than 13% for systems without pH control to more than 92% for systems operated at pH of 4.0. By maintaining pH at 4.0, we are able to decrease the hydraulic retention time to 3 min and still achieve more than 87% nitrate reduction. The recovery of total nitrogen added as nitrate, ammonium, and nitrite was less than 50% for the system operated at pH4.0, and was close to 100% for a system without pH control. The possibility of nitrate and ammonium adsorption onto iron corrosion products was ruled out by studying the behavior of their adsorption onto freshly hydrous ferric oxide at variable pH. Results indicate the probable formation of nitrogen gas species during reaction in pH4.0.  相似文献   

14.
通过投加不同浓度的纳米零价铁(NZVI)和零价铁(ZVI),考察了暗发酵制氢过程中铁离子组成和浓度变化、氢化酶和脱氢酶活性,研究了2种添加剂强化餐厨垃圾高温((55±1) ℃)暗发酵制氢的作用机制。结果表明:投加NZVI和ZVI均可提高餐厨垃圾暗发酵制氢性能;当投加100 mg·L−1 ZVI时,产氢效果最佳,最大产氢潜力和最大产氢速率分别为425.72 mL和66.32 mL·h−1,是投加NZVI实验组的1.64倍和1.34倍,代谢途径是以乙醇型发酵为主的混合型发酵;在投加NZVI和ZVI后,暗发酵制氢末端产物的Fe2+和Fe3+浓度升高,投加300 mg·L−1 NZVI和100 mg·L−1 ZVI实验组Fe2+浓度最大,是未投加实验组的2倍和1.87倍;与反应前相比,Fe2+显著升高,Fe3+由于微生物利用与转化浓度降低,同时可有效提高氢化酶活性。投加100 mg·L−1 ZVI不仅可提高氢化酶活性,还可提高脱氢酶活性。以上结果可为提高餐厨垃圾等复杂有机废物的高效能源化提供参考。  相似文献   

15.
A cost-effective method with zero valent iron (ZVI) powder was developed for the purification of thiobencarb (TB)-contaminated water. The removal treatment was performed in the batch system. A sample solution of 10 ml containing 10 microg ml(-1) of TB could be almost completely treated by 100mg of ZVI at 25 degrees C for 12h of treatment time. Since the formation of chloride ion in the aqueous solution during the treatment of TB was observed, the removal of TB with ZVI may contain two processes: reduction (degradation) and adsorption. Because the present treatment for TB is simple, easy handling and cheap, the developed technology with ZVI can contribute to the treatment of agricultural wastewaters.  相似文献   

16.
Li CW  Chen YM  Yen WS 《Chemosphere》2007,68(2):310-316
A fluidized zero valent iron (ZVI) reactor pressurized by CO(2) gas for controlling pH was employed for nitrate reduction. The proposed CO(2) pressurized system potentially has advantages of using less CO(2) gas and reaching equilibrium pH faster than CO(2)-bubbled system. However, due to weak acid nature of carbonic acid, system pH gradually increased with increasing oxidation of ZVI and reduction of nitrate. As pH increased with progress of reaction, nitrate removal rate decreased continuously. The results indicate that nitrate removal efficiency increases with increasing initial ZVI dosage but reaches plateau at ZVI doses of higher than 8.25gl(-1), and initial nitrate concentration up to 100mg l(-1) as N has minimal impact on the removal efficiency. Unlike the fluidized system with pH control by strong acid reported in our pervious study, near 100% of nitrogen recovery was observed in the current process, indicating that nitrate reduction by ZVI with different pH controlled mechanisms will have different reaction routes.  相似文献   

17.
The remediation of nitroaromatic contaminated groundwater is sometimes difficult because nitroaromatic compounds are resistant to biodegradation and, when they do transform, the degradation of the products may also be incomplete. A simple nitroaromatic compound, nitrobenzene, was chosen to assess the feasibility of an in situ multi-zone treatment system at the laboratory scale. The proposed treatment system consists of a zero valent granular iron zone to reduce nitrobenzene to aniline, followed by a passive oxygen release zone for the aerobic biodegradation of the aniline daughter product using pristine aquifer material from Canadian Forces Base (CFB) Borden, Ontario, as an initial microbial source. In laboratory batch experiments, nitrobenzene was found to reduce quickly in the presence of granular iron forming aniline, which was not further degraded but remained partially sorbed onto the granular iron surface. Aniline was found to be readily biodegraded with little metabolic lag under aerobic conditions using the pristine aquifer material. A sequential column experiment, containing a granular iron reducing zone and an aerobic biodegradation zone, successively degraded nitrobenzene and then aniline to below detection limits (0.5 microM) without any noticeable reduction in hydraulic conductivity from biofouling, or through the formation of precipitates.  相似文献   

18.
Chemical reaction between nitric oxide (NO) andzero valent iron (ZVI) was studied in a packed-bed column process with high temperatures based on ZVI strong reducing abilities. For six controlled temperatures of 523-773 K and 400 ppm of NO (typical flue gas temperature and concentration), under short empty bed contacttime ([EBCT] 0.0226-0.0679 sec), NO was completely removed for temperature of 573-773 K but not for 523 K. Break-through curves were conducted for the five working temperatures, and the results indicated that NO reductions by ZVI were varied from 2 to 26.7 mg NO/g ZVI. Higher temperature and longer EBCT achieved better NO removal efficiency. X-ray diffraction (XRD) and electron spectroscopy for chemical analysis (ESCA) were conducted to analyze the crystal structure and oxidation state of the reacted ZVI. Three layers of iron species were detected by XRD: ZVI, Fe3O4, and Fe2O3. ZVI was the most prevalent species, and Fe3O4 and Fe2O3 were less from the XRD analysis. By ESCA, the oxidation state on the reacted ZVI surface was determined, and the species was identifled as Fe2O3, which is the most oxidizing species for iron. Therefore, three layers from the ZVI core to the ZVI surface can be identified: ZVI, Fe3O4, and Fe2O3. Combining the results from XRD and ESCA, the mechanisms for ZVI and NO can be proposed as two consecutive reactions from lower oxidation state (ZVI) in the core to higher oxidation state on the iron surface (Fe2O3): 3Fe + 4NO<--(high temperature)-->Fe3O4 + 2N2 (A1), 4Fe3O4 + 2NO<--(high temperature)-->6Fe2O3 + N2* (A2) Because there was only <5% ZVI used to remove NO comparing to theoretical ZVI used based on the proposed stoichiometry, it can be concluded that the heterogeneous reaction only occurred on the ZVI surface instead of on bulk of the ZVI.  相似文献   

19.
Cho HH  Park JW 《Chemosphere》2006,64(6):1047-1052
Effects of surfactants and natural organic matter (NOM) on the sorption and reduction of tetrachloroethylene (PCE) with zero valent iron (ZVI) were examined in this study. PCE reduction by ZVI depended on the ionic type of the surfactants. The removal of PCE and production of TCE with non-ionic Triton X-100 and cationic hexadecyltrimethyl-ammonium (HDTMA) at one-half and two times the critical micelle concentration (CMC) were 1.2-1.8 times higher than without surfactants because of the enhanced PCE partitioning and surface concentration by the sorbed surfactants. When anionic sodium dodecyl benzene sulfonate (SDDBS) at one-half and two times CMC and NOM at 20 mg l(-1) and 50 mg l(-1) concentrations were used, the removal of PCE doubled and TCE production decreased. In the presence of SDDBS, TCE production by ZVI was lower than with HDTMA and Triton X-100 while PCE removal was higher than with the other surfactants.  相似文献   

20.
超声波和零价铁联用对氯代苯酚脱氯降解作用的研究   总被引:2,自引:1,他引:1  
赵保卫  周怡  赵艺 《环境工程学报》2009,3(11):1973-1976
采用超声波和零价铁联用对氯代有机物3氯苯酚(CP)、2,4-二氯苯酚(DCP)和2,4,6-三氯苯酚(TCP)模拟废水进行了脱氯处理研究。以单因素法, 考察了铁粉初始投加量、溶液的初始浓度、超声波功率和溶液的pH值等因素对氯代酚降解的影响,并探讨了降解反应动力学。结果表明,超声波和零价铁联用对氯酚具有显著的降解效果,当水样初始浓度为25 mg/L,溶液pH呈弱酸性,超声波功率为200 W时,氯代酚的脱氯效率达到最大值。降解反应符合准一级反应,CP、DCP和TCP的反应速率常数分别0.0613 h-1、0.374 h-1和0.197 h-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号