首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
ABSTRACT: The analysis of stream flow and several water quality parameters in six Illinois rivers showed both deterioration and improvement in quality indicators during 1976–1977 drought. The adverse impacts were an increase of ammonia and manganese concentrations and, to a lesser degree, increased concentrations of phenol and specific conductance. At the worst point during the drought, the 12-month moving average of monthly ammonia concentration in the Sangamon River was about 620 percent higher than the antecedent value. On the other hand, average concentrations of nitrites and nitrates, total iron, and the number of coliform bacteria significantly decreased. This positive response suggests that streams which are considered unsuitable for municipal supply due to high levels of these quality indicators may be used as emergency sources during droughts.  相似文献   

2.
3.
Disturbance and recovery of large floodplain rivers   总被引:7,自引:0,他引:7  
Disturbance in a river-floodplain system is defined as an unpredictable event that disrupts structure or function at the ecosystem, community, or population level. Disturbance can result in species replacements or losses, or shifts of ecosystems from one persistent condition to another. A disturbance can be a discrete event or a graded change in a controlling factor that eventually exceeds a critical threshold. The annual flood is the major driving variable that facilitates lateral exchanges of nutrients, organic matter, and organisms. The annual flood is not normally considered a disturbance unless its timing or magnitude is “atypical.” The record flood of 1973 had little effect on the biota at a long-term study site on the Mississippi River, but the absence of a flood during the 1976–1977 Midwestern drought caused short- and long-term changes. Body burdens of contaminants increased temporarily in key species, because of increased concentration resulting from reduced dilution. Reduced runoff and sediment input improved light penetration and increased the depth at which aquatic macrophytes could grow. Developing plant beds exerted a high degree of biotic control and were able to persist, despite the resumption of normal floods and turbidity in subsequent years. In contrast to the discrete event that disturbed the Mississippi River, a major confluent, the Illinois River, has been degraded by a gradual increase in sediment input and sediment resuspension. From 1958 to 1961 formerly productive backwaters and lakes along a 320-km reach of the Illinois River changed from clear, vegetated areas to turbid, barren basins. The change to a system largely controlled by abiotic factors was rapid and the degraded condition persists. Traditional approaches to experimental design are poorly suited for detecting control mechanisms and for determining the critical thresholds in large river-floodplains. Large river-floodplain systems cannot be manipulated or sampled as easily as small streams, and greater use should be made of man-made or natural disturbances and environmental restoration as opportunistic experiments to measure thresholds and monitor the recovery process. Coauthors are listed in alphabetical order.  相似文献   

4.
Illinois has been operating an ambient water quality network of almost 600 stations for several years. In 1977 changes in program emphasis toward intensive monitoring, the need for improved procedures and quality control in monitoring operations, and the desire to create a single data base of all Illinois State monitoring data, resulted in a redesign of the ambient monitoring program.A unique cooperative program between the Illinois Environmental Protection Agency and the US Geological Survey provides for their monitoring a portion of the network. The Survey provides flow data at most network stations as well as extensive manpower training, equipment, data processing, and program quality control. Informal agreements with other agencies have permitted a great reduction in the monitoring effort required by the Illinois Environmental Protection Agency.  相似文献   

5.
ABSTRACT: Growers in California used several energy and water conservation strategies in response to the drought conditions of 1976 and 1977. The strategies included an increased use of ground water, in creased irrigation efficiencies, and shifts in cropping patterns. Drought-related losses to irrigated agriculture were minimized as a result of these modifications. Some future problems may have been created, however, by obtaining the needed water supplies for 1976–77. These problems include the effects of extensive water pumping on ground water reservoirs and ground subsidence. In addition, reduced water application by less frequent irrigation and changes in irrigation methods may affect the total salt balance for future years. Several conservation strategies that have some potential application in California were identified as: maintaining and augmenting surface water supply, increasing power use efficiencies, and improving irrigation efficiencies. Electricity savings associated with water conservation have been estimated as high as 25 percent. Specific near term actions suggested for facilitating conservation included: an expanded irrigation management system, efficient water deliveries, and a continued effort on the part of the individual growers to use resources during periods of normal rainfall as they were used under drought conditions.  相似文献   

6.
A simulation model was developed for assessing the effects of power plant impacts on fish populations. The model was based on biomass changes in a fish population that divided into 4 life stages: eggs, larvae, juveniles, and adults. Metabolism of fish was included in the model as assimilation and respiration with the effects of temperature push-pull regulation. A cohort technique was used for life stage transfers in the young stages. Compensation was included in terms of density-dependent mortality of the young fish. Power plant impacts on a fish population included entrainment (eggs and larvae) and impingement (juveniles and adults).The model was applied to the gizzard shad (Dorosoma cepedianum) population in Pool 14 of the Mississippi River in Illinois and lowa. The nearby nuclear power plant, the Quad-Cities Station, is located on the Illinois side. The simulation of the model with the 1976 field data estimates of the power plant entrainment and impingement predicted a 10 percent potential reduction of the population over 30 years. The simulated reduction of the population with the effects of different river flows showed that the result with the 1976 river flow data gave 1.5 times higher reduction than the results with data of other plant operation years, 1972 through 1975. Because the 1976 data recorded low river flow, the 10 percent reduction quoted above may be high.  相似文献   

7.
ABSTRACT: We compared the recovery from abusive grazing of aquatic habitat due to different range management on two geomorphically similar rangeland streams in northwest Nevada. Managers excluded livestock from the Mahogany Creek watershed from 1976 to 1990 while allowing rotation of rest grazing on its tributary Summer Camp Creek. Bank stability, defined as the lack of apparent bank erosion or deposition, improved through the study period on both streams, but periodic grazing and flooding decreased stability more on Summer Camp Creek than flooding alone on Mahogany Creek. Pool quantity and quality on each stream decreased because of coarse woody debris removal and sediment deposition during a drought. Fine stream bottom sediments decreased five years after the removal of livestock, but sedimentation increased during low flows in both streams below road crossings. Tree cover increased 35 percent at both streams. Thus, recovery of stability and cover and decreased sedimentation are compatible with rotation of rest grazing on Summer Camp Creek. Width/depth ratio and gravel/cobble percent did not change because they are inherently stable in this stream type. Management activities such as coarse woody debris removal limited pool recover and road crossings increased sedimentation.  相似文献   

8.
Correlative relationships exist among conductivity, alkalinity, and hardness in streams due to natural geological and climatological controls, but the relationships among these three water-quality factors can be altered strongly by inputs of ion-rich wastewaters. The degree of alteration can be monitored conveniently by use of a simple chemical perturbation index, computed by subtracting the sum of rank pairwise correlations among the conductivity, alkalinity, and hardness (for observations on each of these variables, measured through time) from 3.0. The chemical perturbation index can be used to document or characterize spatiotemporal changes in stream water quality. This study explains the development of the index's concept and provides examples of its application in an extensive stream monitoring program used to assess ecological conditions in streams on the Department of Energy's Oak Ridge Reservation in east Tennessee, USA. The chemical perturbation index technique may be particularly useful in community-based stream monitoring programs because to its simplicity and low cost.  相似文献   

9.
ABSTRACT: Surface water impairment by fecal coliform bacteria is a water quality issue of national scope and importance. In Virginia, more than 400 stream and river segments are on the Commonwealth's 2002 303(d) list because of fecal coliform impairment. Total maximum daily loads (TMDLs) will be developed for most of these listed streams and rivers. Information regarding the major fecal coliform sources that impair surface water quality would enhance the development of effective watershed models and improve TMDLs. Bacterial source tracking (BST) is a recently developed technology for identifying the sources of fecal coliform bacteria and it may be helpful in generating improved TMDLs. Bacterial source tracking was performed, watershed models were developed, and TMDLs were prepared for three streams (Accotink Creek, Christians Creek, and Blacks Run) on Virginia's 303(d) list of impaired waters. Quality assurance of the BST work suggests that these data adequately describe the bacteria sources that are impairing these streams. Initial comparison of simulated bacterial sources with the observed BST data indicated that the fecal coliform sources were represented inaccurately in the initial model simulation. Revised model simulations (based on BST data) appeared to provide a better representation of the sources of fecal coliform bacteria in these three streams. The coupled approach of incorporating BST data into the fecal coliform transport model appears to reduce model uncertainty and should result in an improved TMDL.  相似文献   

10.
ABSTRACT: Country level electoral data were used to analyze the voting patterns of eight water related constitutional amendment elections. Both water quality enhancement amendments (1971, 1976), and three of six water development amendments (1957, 1962, 1966) have been ratified, thus establishing a statewide policy of reservoir development, a funding mechanism to implement such a policy, and the creation of a water management agency. Begining with the 1969 election, a West Texas-East Texas regionalized voting pattern has emerged, resulting in the defeat of three amendments (1969, 1976, 1981) intended to provide additional funding for water development. This regionalization reflects different climatic, physiographic, economic, and locational factors, and represents a potential obstacle to coordinated water management in Texas.  相似文献   

11.
Campana, Pete, John Knox, Andrew Grundstein, and John Dowd, 2012. The 2007‐2009 Drought in Athens, Georgia, United States: A Climatological Analysis and an Assessment of Future Water Availability. Journal of the American Water Resources Association (JAWRA) 48(2): 379‐390. DOI: 10.1111/j.1752‐1688.2011.00619.x Abstract: Population growth and development in many regions of the world increase the demand for water and vulnerability to water shortages. Our research provides a case study of how population growth can augment the severity of a drought. During 2007‐2009, a drought event that caused extreme societal impacts occurred in the Athens, Georgia region (defined as Clarke, Barrow, Oconee, and Jackson counties). An examination of drought indices and precipitation records indicates that conditions were severe, but not worse than during the 1925‐1927, 1954‐1956, and 1985‐1987 drought events. A drought of similar length to the 2007‐2009 drought would be expected to occur approximately every 25 years. Streamflow analysis shows that discharge levels in area streams were at a record low during 2007 before water restrictions were implemented, because of greater water usage caused by recent population increases. These population increases, combined with a lack of water conservation, led to severe water shortages in the Athens region during late 2007. Only after per capita usage decreased did water resources last despite continuing drought conditions through 2009. Retaining mitigation strategies and withdrawal levels such as seen during the height of the drought will be an essential strategy to prevent water shortages during future extreme drought events. The key mitigation strategy, independent local action to restrict water use in advance of state‐level restrictions, is now prohibited by Georgia State Law.  相似文献   

12.
ABSTRACT: Biotic indices and sediment trace element concentrations for 43 streams in northeastern Illinois (Chicago area) from the 1980s and 1990s were examined along an agricultural to urban land cover gradient to explore the relations among biotic integrity, sediment chemistry, and urbanization. The Illinois fish Alternative Index of Biotic Integrity (AIBI) ranged from poor to excellent in agricultural/rural streams, but streams with more than 10 percent watershed urban land (about 500 people/mi2) had fair or poor index scores. A macroinvertebrate index (MBI) showed similar trends. A qualitative habitat index (PIBI) did not correlate to either urban indicator. The AIBI and MBI correlated with urban associated sediment trace element concentrations. Elevated copper concentrations in sediment occurred in streams with greater than 40 percent watershed urban land. The number of intolerant fish species and modified index of biotic integrity scores increased in some rural, urbanizing, and urban streams from the 1980s to 1990s, with the largest increases occurring in rural streams with loamy/sandy surficial deposits. However, smaller increases also occurred in urban streams with clayey surficial deposits and over 50 percent watershed urban land. These data illustrate the potentially complex spatial and temporal relations among biotic integrity, sediment chemistry, watershed urban land, population density, and regional and local geologic setting.  相似文献   

13.
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.  相似文献   

14.
The decision making process in development of water resources has often been subjective. A scheme for inventorying the hydrologic properties of watersheds would be a powerful tool, providing objective criteria that can be used in judgments and which can be applied in surveys for water management or conservation purposes. Such an inventory was used in studying the Green River, Wyoming and Little Miami, Ohio. The classification system considered characteristics of the water budget, variability and reliability of flow, and water quality. Class ranks for water budget were based on amount of runoff and water loss. Regulation and variation in flow were ranked on impoundments, variability index, coefficient of variability, 90% flow duration and maximum flow index. The streams’ chemical and solid loads were also considered. Classification of the Green and Little Miami rivers pointed out distinctive differences between their hydrologic characteristics. The inventory can thus be examined to compare stretches of river or whole watersheds, objectively determining the best possible use.  相似文献   

15.
ABSTRACT: Following an enclosure of a sink-hole connecting Lake Tarpon to the Gulf of Mexico, the chloride concentration of lake waters decreased. Water and chloride budgets for the lake in 1975 were prepared, and predictions using the model of Lerman and Brunskill (1971) were made as to the time required for the lake to achieve fresh water status. Model verification indicated good agreement with predictions in 1976; however, data on [C1-] for 1977 and 1978 are not as supportive of the model used. The information concerning the Lake Tarpon watershed provided by this latter fact is discussed.  相似文献   

16.
Water quality modeling is an ideal tool for simulating physical, chemical, and biological changes in aquatic systems. It has been utilized in a number of GIS-based water quality management and analysis applications. However, there is considerable need for a decision-making process to translate the modeling result into an understandable form and thereby help users to make relevant judgments and decisions. This paper introduces a water quality index termed QUAL2E water quality loading index (QWQLI). This new WQI is based on water quality modeling by QUAL2E, which is a popular steady-state model for the water quality of rivers and streams. An experiment applying the index to the Sapgyo River in Korea was implemented. Unlike other WQIs, the proposed index is specifically used for simulated water quality using QUAL2E to mainly reflect pollutant loading levels. Based on the index, an iterative modeling-judgment process was designed to make decisions to decrease input pollutants from pollutant sources. Furthermore, an indexing and decision analysis can be performed in a GIS framework, which can provide various spatial analyses. This can facilitate the decision-making process under various scenarios considering spatial variability. The result shows that the index can evaluate and classify the simulation results using QUAL2E and that it can effectively identify the elements that should be improved in the decision-making process. In addition, the results imply that further study should be carried out to automate algorithms and subsidiary programs supporting the decision-making process.  相似文献   

17.
We tested the effect of nutrient inputs from wastewater treatment plants (WWTPs) on stream nutrient retention efficiency by examining the longitudinal patterns of ammonium, nitrate, and phosphate concentrations downstream of WWTP effluents in 15 streams throughout Catalonia (Spain). We hypothesized that large nutrient loadings would saturate stream communities, lowering nutrient retention efficiency (i.e., nutrient retention relative to nutrient flux) relative to less polluted streams. Longitudinal variation in ambient nutrient concentration reflected the net result of physical, chemical, or biological uptake and release processes. Therefore, gradual increases in nutrient concentration indicate that the stream acts as a net source of nutrients to downstream environments, whereas gradual declines indicate that the stream acts as a net sink. In those streams where gradual declines in nutrient concentration were observed, we calculated the nutrient uptake length as an indicator of the stream nutrient retention efficiency. No significant decline was found in dilution-corrected concentrations of dissolved inorganic nitrogen (DIN) and phosphate in 40 and 45% of streams, respectively. In the remaining streams, uptake length (estimated based on the decline of nutrient concentrations at ambient levels) ranged from 0.14 to 29 km (DIN), and from 0.14 to 14 km (phosphate). Overall, these values are longer (lower retention efficiency) than those from nonpolluted streams of similar size, supporting our hypothesis, and suggest that high nutrient loads affect fluvial ecosystem function. This study demonstrates that the efficiency of stream ecosystems to remove nutrients has limitations because it can be significantly altered by the quantity and quality of the receiving water.  相似文献   

18.
ABSTRACT: An extensive base of water quality information emphasizing the effects of land use and hydrology was obtained in the karstified Fountain Creek watershed of southwestern Illinois to help resolve local water quality issues. Agrichemicals dominate the loads of most water quality constituents in the streams and shallow karstic ground water. Only calcium (Ca), magnesium (Mg), Aluminum (A1), and sulfate (SO4) ions are predominantly derived from bedrock or soils, while agrichemicals contribute most of the sodium (Na), potassium (K), chlorine (Cl), nitrate (NO3), fluorine (F), phosphorus (P), and atrazine. Concentrations of individual ions correlate with discharge variations in karst springs and surface streams; highly soluble ions supplied by diffuse ground water are diluted by high flows, while less soluble ions increase with flow as they are mobilized from fields to karst conduits under storm conditions. Treated wastewater containing detergent residues dominates the boron load of streams and provides important subordinate loads of several other constituents, including atrazine derived from the Mississippi River via the public water supply. Average surface water concentrations at the watershed outlet closely approximate a 92:8 mixture of karst ground water and treated wastewater, demonstrating the dominance of ground water contributions to streams. Therefore the karst aquifer and watershed streams form a single water quality system that is also affected by wastewater effluent.  相似文献   

19.
ABSTRACT: The ground water quality of a shallow unconfined aquifer was monitored before and after implementation of a border strip irrigation scheme, by taking monthly samples from an array of 13 shallow wells. Two 30 m deep wells were sampled to obtain vertical concentration profiles. Marked vertical, temporal, and spatial variabilities were recorded. The monthly data were analyzed for step and linear trends using nonparametric tests that were adjusted for the effects of serial correlation. Average nitrate concentrations increased in the preirrigation period and decreased after irrigation began. This was attributed to wetter years in 1978–1979 than in 1976–1977 which increased leaching, and to disturbance of the topsoil during land contouring before irrigation, followed by excessive drainage after irrigation. Few significant trends were recorded for other determinants, possibly because of shorter data records. Nitrate, sulphate, and potassium concentrations decreased with depth, whereas sodium, calcium, bicarbonate, and chloride concentrations increased. These trends allowed an estimation to be made of the depth of ground water affected by percolating drainage. This depth increased during the irrigation season and after periods of winter recharge. Furthermore, an overall increase in the depth of drainage-affected ground water occurred with time, which paralleled the development of the irrigation scheme.  相似文献   

20.
ABSTRACT: Spatial variation of five water quality variables were analyzed using composite water samples collected periodically from eight small watersheds (11.4–71.6 km2) in forested East Texas during 1977 through 1980. Based on 31 observations during the four-year period the average yield of nitrate-nitrite nitrogen (NNN), total kjeldahl nitrogen (TKN), total phosphorus (PO4), chloride (CHL), and total suspended sediment (TSS) were 1.43, 21.96, 3.09, 50.11, and 90.39 ka/ha/yr, respectively. Compared to the water quality standards of the U.S. Environmental Protection Agency (1976) and the Texas Department of Water Resources (1976) for CHL, TSS, and NNN, none of the observations exceeded the limits for public water supplies. The study showed that forested watersheds normally yielded stream flow with better quality than that from agricultural watersheds. Watersheds of greater percent of pasture area, mean slope, stream segment frequency, and drainage density produced greater concentrations for these five chemical parameters in water samples. Meaningful equations were developed for estimating mean average yields for each chemical parameter for each watershed with R2 ranging from 0.77 to 0.96 and standard error of estimates from 17 to 33 percent of the observed means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号