共查询到17条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
分析电石渣湿法脱硫工艺在烟气脱硫中应用的可行性,将电石渣湿法脱硫工艺和石灰石湿法脱硫工艺进行比较,并提出相关解决方案和建议. 相似文献
5.
为了提高锅炉的脱硫效率,重点阐述了利用PVC工序的废渣和废浆液进行锅炉脱硫的全新的工艺。这种联合脱硫收到了意想不到的效果,实为这一领域的最新尝试。 相似文献
6.
7.
以粉煤灰与电石渣的混合物(FC)作为载体,Na2O为活性组分,采用超声波浸渍法制备了吸附剂Na2O/FC。通过XRD、BET、SEM分析对吸附剂进行表征,探讨在微波辐射下吸附剂协同脱硫脱硝机制。结果表明:微波下Na2O负载可显著提高吸附剂的性能;6%Na2O/FC(其中6%代表活性组分Na2O在吸附剂中质量分数)的协同脱硫脱硝性能最佳,其脱硫t90%和t50%(tx%为吸附剂的脱硫率或脱硝率达到x%时的反应时间)分别为12,73 min,脱硝t90%和t50%分别为4,16 min。机理分析表明:协同脱硫脱硝过程起初以物理吸附为主,反应进行一段时间后以化学吸附为主。微波下吸附剂Na2O/FC的化学吸附过程为活性氧将SO2和NO氧化为SO3和N2O5后,SO3和N2O5与金属氧化物反应生成Ca5(SiO4)2SO4、(MgxCa1-x)(NO3)2、CaSO4等硫酸盐和硝酸盐,同时活性组分Na2O可直接与吸附态的SO2与NO结合生成Na2SO3和NaNO3。 相似文献
8.
电石渣对煤泥水的混凝作用由实验可知,不是补给OH~-,而是提供了大量的Ca~(2+),Ca~(2+)通过压缩双电层,破坏了煤泥水颗粒的稳定性,从而使煤泥颗粒发生凝聚。OH~-和Ca(OH)_2对煤泥水的混凝不直接起作用。 相似文献
9.
10.
电石渣在煤泥水混凝中的作用机理 :电石渣对煤泥水混凝作用不是补给了 OH- ,而是提供了大量的 Ca2 + 。Ca2 +通过压缩双电层 ,破坏了煤泥颗粒的稳定性 ,从而使煤泥颗粒发生凝聚。OH-和 Ca( OH) 2 对煤泥水的混凝不直接起作用。 相似文献
11.
以合山煤(HS)和万盛煤(WS)为研究对象,分别讨论了当石灰石作固硫剂时钙硫比、温度等因素对固硫效率的影响;运用XRD测试手段,研究了不同脱硫条件对其灰渣产物矿相组成的影响规律,并利用CaO-Al2O3-SiO2三元相图进行分析,从而初步揭示出煤燃烧脱硫过程中无机矿物质间的转化行为.实验表明:燃烧温度和钙硫比对固硫率及灰渣产物的矿相组成都具有很重要的影响.升高温度或提高Ca/S,能明显促进CaO与煤粉中无机成分间的固相反应,利于C4AF、C2AS、β-C2S等矿物的形成,但大于1050℃后易使硬石膏发生分解,而引起固硫率下降.固硫产物中含硫矿物的形式与含量决定了不同温度下固硫效率.本实验中,石灰石对合山煤的最佳固硫条件为Ca/S=2~3,t=850~900℃,此时固硫率高达90%左右. 相似文献
12.
受制于生产工艺、处理技术、处理效率等多因素的影响,各行业大气污染治理成本获取较为复杂,所以构建能够真实有效获取大气污染治理成本的综合模型具有很强的必要性.火电行业一直都是大气污染治理的重点,该文将其作为研究对象,基于2011—2015年的环境统计基表数据和现场调查数据,利用最小二乘非线性回归法,对不同脱硫技术和装机容量,从固定成本、变动成本和SO2去除量3个角度构建脱硫成本模型,涉及指标包括装机容量、煤的含硫量、相应煤种的发热量、SO2的脱除效率、机组运行时间、发电标煤耗以及煤炭中硫的转化率等.结果表明:①炉内脱硫法、石灰石石膏脱硫法及其他脱硫方法的拟合优度均在0.01水平下显著,3种方法的模拟成本值与实际环境统计数据接近,误差不超过300元/t,成本模型都具有一定合理性,能够很好地实现各脱硫技术和装机容量的成本预测.②从3种脱硫技术看,石灰石石膏法模型脱硫成本最高,平均值达到3 400元/t;从装机容量看,脱硫成本随装机容量的增加呈逐渐下降趋势;企业可根据自身条件进行脱硫方法和装机容量的最优化调整.③指标敏感度分析结果显示,脱硫设施的SO2脱除效率和煤炭含硫量对成本模型的影响程度较大,所以整个脱硫过程中机组脱硫效率的设定和煤炭质量的选取是脱硫耗费的关键.研究显示,炉内脱硫法、石灰石石膏脱硫法及其他脱硫方法这3种脱硫方法和0~100 MW、100~200 MW及>200 MW这3种装机容量的成本模型可使相应的火电行业进行有效的脱硫成本估计,并根据指标的敏感性进行成本控制,进而为大气污染防治政策的费用效益分析提供参考. 相似文献
13.
14.
15.
16.
为了充分利用资源,降低脱硫成本,利用传统皮江法冶镁工艺中产生的大量镁渣为基质,以冶镁回转窑除尘器中过滤产生的粉尘和冶镁原材料白云石矿石为辅料,按一定比例混合制备湿式脱硫法脱硫剂,研究镁渣、粉尘、单一矿石、两者混合以及三者混合作为脱硫剂的脱硫效果。结果表明:当m(镁渣):m(粉尘):m(矿石)=10:0.3:0.035时脱硫效果最佳,此时复合脱硫剂水溶液(10.335 g/100 mL)可消耗1 mL/L的稀H2SO4 67.58 mL。为进一步提高其脱硫效果,添加碱性活化剂(Na2CO3、NaOH),发现NaOH活化效果较好,当ω(NaOH)加入量为2.0%时,复合脱硫剂可消耗稀H2SO4 214.42 mL,是未活化之前的3.17倍。SEM观察结果显示,加入活化剂后,复合脱硫剂反应面积明显增加。经活化后的镁渣基复合脱硫剂可用于烟气湿式脱硫,实现了镁渣的资源化利用,达到“以废治废”的目的,具有很好的市场化前景。 相似文献