共查询到4条相似文献,搜索用时 0 毫秒
1.
Wei Xing Wenjing Lu Yan Zhao Xu Zhang Wenjing Deng Thomas H. Christensen 《Waste management (New York, N.Y.)》2013,33(2):382-389
In some arid regions where landfill produces minimal amount of leachate, leachate recirculation is suggested as a cost-effective option. However, its long-term impacts to environment remain disputed. For the purpose of revealing the environmental impacts of leachate recirculation in landfill, four scenarios were modeled using EASEWASTE, comparing the strategies of leachate recirculation (with or without gas management), evaporation and discharge. In the current situation (Scenario A), a total of 280 t of waste was generated and then transported to a conventional landfill for disposal. A number of contaminants derived from waste can be stored in the landfill for long periods, with 11.69 person equivalent (PE) for stored ecotoxicity in water and 29.62 PE for stored ecotoxicity in soil, considered as potential risks of releasing to the environment someday. Meanwhile, impacts to ecotoxicity and human toxicity in surface water, and those to groundwater, present relatively low levels. In Scenario B, leachate evaporation in a collecting pool has minimal impacts on surface water. However, this strategy significantly impacts groundwater (1055.16 PE) because of the potential infiltration of leachate, with major contaminants of As, ammonia, and Cd. A number of ions, such as Cl?, Mg2+, and Ca2+, may also contaminate groundwater. In Scenario C, the direct discharge of leachate to surface water may result in acidification (2.71 PE) and nutrient enrichment (2.88 PE), primarily attributed to soluble ammonia in leachate and the depositional ammonia from biogas. Moreover, the direct discharge of leachate may also result in ecotoxicity and human toxicity via water contaminated by heavy metals in leachate, with 3.96 PE and 11.64 PE respectively. The results also show that landfill gas is the main contributor to global warming and photochemical ozone formation due to methane emission. In Scenario D, landfill gas flaring was thus be modeled and proven to be efficient for reducing impacts by approximately 90% in most categories, like global warming, photochemical ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. Therefore, leachate recirculation is considered a cost-effective and environmentally viable solution for the current situation, and landfill gas treatment is urgently required. These results can provide important evidence for leachate and gas management of landfill in arid regions. 相似文献
2.
Bahram Kamarehie Ahmad Joneidi Jafari Hassan Asilian Mahabadi 《Journal of Material Cycles and Waste Management》2014,16(4):711-720
This research was done to assess the dechlorination and decomposition of polychlorinated biphenyls (PCBs) in real waste transformer oil through a modified domestic microwave oven (MDMW). The influence of microwave power (200–1000 W), reaction time (30–600 s), polyethylene glycol (PEG) (1.5–7.5 g), iron powder (0.3–1.5 g), NaOH (0.3–1.5 g), and H2O (0.4–2 ml) were investigated on the decomposition efficiency of PCBs existing in real waste transformer oil with MDMW. Obtained data indicate that PEG and NaOH have the greatest influence on decomposition of PCBs; while, iron did not influence, and H2O decreased, the decomposition efficiency of PCBs. Experimental data also indicated that with the optimum amount of variables through a central composites design method (PEG = 5.34 g, NaOH = 1.17 g, Fe = 0.6 g, H2O = 0.8 ml and microwave power 800 W), 78 % of PCBs was degraded at a reaction time of about 6 min. In addition, the PCBs decomposition without using water increased up to 100 % in the reactor with the MDMW at 6 min. Accordingly, results showed that MDMW was a very efficient factor for PCBs decomposition from waste transformer oil. Also, using microwave irradiation, availability and inexpensive materials (PEG, NaOH), and iron suggest this method as a fast, effective, and cheap method for PCB decomposition of waste oils. 相似文献
3.
K.N. Segbeaya G. Feuillade-Cathalifaud G. Baba E.K. Koledzi V. Pallier G. Tchangbedji G. Matejka 《Waste management (New York, N.Y.)》2012,32(12):2511-2517
Waste biodegradation has been largely investigated in the literature by using conventional tests like the BMP test and the respirometric test, whereas only few studies deal with the use of leaching tests in combination with biological activity measurements. Consequently, this study used an improved leaching test to evaluate the biodegradability of two deposits of fresh household waste from the city of Kara in Togo. The first deposit came from households in neighborhoods located in the outskirts of the city and the second consisted of fresh waste, mainly composed of business waste and household waste, collected in the urban center and aimed at being deposited in the landfill. A physicochemical characterization of the two deposits completed the leaching test. The biological activity was monitored by measuring O2 consumption and CO2 production. pH, DOC/OM, VFA/DOC ratios and the SUVA index was measured in the leaching juice to assess both the state of degradation of the waste in the deposits and the ability of the organic matter to be mobilized quickly and to be easily assimilated by microorganisms. The biodegradability of waste from the city of Kara correlated with their origin even though the physical characteristics of the two deposits studied differed greatly. 相似文献
4.
Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature.Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. 相似文献