首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is a versatile, biobased and biodegradable copolymer from the family of polyhydroxyalkanoates. This study aims to further ameliorate its properties in order to enhance its applicability for food packaging purposes through preparation of organomodified montmorillonite clay (OMMT) nanocomposites. Nanocomposites based on pure PHBHHx as well as commercial PHBHHx granulate, after a previous dry-mixing with OMMT in concentrations of 1, 3, 5 and 10 wt%, were prepared using melt blending and compression molding. Investigation of the samples showed well dispersed nanofiller and highly intercalated nanocomposites, resulting in a continuous decrease in gas permeability, lowering O2, CO2 and water vapor permeability with about 5–7 % and approximately 40 % at OMMT concentration of 1 and 10 wt%, respectively. Besides gas permeability, other properties were affected as well. Thermal stability of the samples increased gradually up to 5 wt% nanofiller, but was reduced at 10 wt%. In order to investigate the effects of OMMT and molecular weights on PHBHHx crystallization, nanocomposites were also produced by solvent-casting and compared to those obtained by melt-blending. Crystallization was retarded, because of severe lowering of molecular weight due to processing-induced chain scission, catalyzed by OMMT moisture. However, this reduction was counteracted for a large part by using commercial PHBHHx granulate, which has shown better crystallization properties. The samples were rendered increasingly more brittle, displaying higher Young’s modulus and severely reduced elongation at break. From this study it appeared that, upon viewing all affected properties as a whole, the sample based on commercial PHBHHx and containing 3 wt% OMMT shows most promise for possible applications, however further research must be performed in order to exploit their fullest potential.  相似文献   

2.
The microbial degradation of tensile test pieces made of poly(3-hydroxybutyrate) [P(3HB)] or copolymers with 10% [P(3HB-co-10%3HV)] and 20% [P(3HB-co-20%3HV)] 3-hydroxyvaleric acid was studied in small household compost heaps. Degradation was measured through loss of weight (surface erosion) and changes in molecular weight and mechanical strength. It was concluded, on the basis of weight loss and loss of mechanical properties, that P(3HB) and P(3HB-co-3HV) plastics were degraded in compost by the action of microorganisms. No decrease inM w could be detected during the degradation process. The P(3HB-co-20%3HV) copolymer was degraded much faster than the homopolymer and P(3HB-co-10%3HV). One hundred nine microbial strains capable of degrading the polymersin vitro were isolated from the samples used in the biodegradation studies, as well as from two other composts, and identified. They consisted of 61 Gram-negative bacteria (e.g.,Acidovorax facilis), 10 Gram-positive bacteria (mainlyBacillus megaterium), 35Streptomyces strains, and 3 molds.  相似文献   

3.
Copolyesters of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) were produced at 30°C from various carbon sources byAlcaligenes eutrophus under batch-fed growth conditions. The production of P(3HB-co-3HV) from butyric and pentanoic acids was effective under nitrogenlimited conditions, and the conversion of carbon sources into copolyester was as high as 56 wt% at a C/N molar ratio of 40. In contrast, under excess-nitrogen conditions (C/N<10), cell growth was good, while P(3HB-co-3HV) production was partially inhibited. The production of P(3HB-co-3HV) from fructose and propionic acid was almost completely inhibited under excess-nitrogen conditions.  相似文献   

4.
Journal of Material Cycles and Waste Management - In the rubber industry, fillers are used to improve certain properties of rubber composites and to make rubber compound recipes cheaper. In this...  相似文献   

5.
Blends of the bacterially produced polyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with cellulose acetate esters (CAE) further substituted with propionyl or butyryl groups (degree of substitution: 2.60 propionyl and 0.36 acetyl or 2.59 butyryl and 0.36 acetyl, respectively) were exposed for 4 months to activated sludge to determine their biodegradability. Samples of such blends made by solution-mixing and solvent-casting had complex morphologies in which both individual components as well as a miscible blend phase were present. Additionally, the two opposite surfaces of solvent-cast films showed both physical and chemical differences. After 2 months, samples of pure PHBV had degraded by more than 98% (15 mg/cm2 of surface area), whereas a pure CAE sample had degraded less than 1% (<0.2 mg/cm2). Samples containing 25% CAE lost less than 40% of their initial weights (6 mg/cm2) over the total 4-month period. Samples with 50% CAE lost up to 16% weight (2 mg/cm2), whereas those containing 75% CAE lost only slightly more weight than corresponding sterile control samples (1 mg/cm2). NMR results confirm that weight loss from samples containing 25% CAE resulted only from degradation of PHBV and that the surface of samples became enriched in CAE. Solvent-cast film samples containing equal amounts of PHBV and CAE degraded preferentially on the surface which formed at the polymer-air interface. Scanning electron microscopy and attenuated total reflectance infrared spectroscopy revealed this surface to have a rougher texture and a greater PHBV content.  相似文献   

6.
The biodegradable and biocompatible copolymer poly-(3-hydroxybutyrate-co-5 mol% 3-hydroxyvalerate), poly-(3HB-co-5 mol% 3HV), was synthesized by Bacillus cereus S10 and the highest yield was determined as 69.91 % at pH 7 and 30 °C after 48 h of incubation using a glucose as the sole carbon source. Poly-(3HB-co-5 mol% 3HV) was purified from bacterial biomass using chloroform. FTIR analysis showed absorption bands at 1,723, 1,274, 1,373, 1,453, 2,932 cm?1 corresponding to C=O, C–O stretching, CH3, –CH2 and –CH groups, respectively. 1H-NMR and 13C-NMR analysis confirmed that the copolymer was composed of 95 mol% of 3-hydroxybutrate and 5 mol% of 3-HV monomeric units. Poly-(3-HB-co-5 mol% 3HV) was used for nanoparticles preparation. The diameter of nanoparticles was 202 nm.  相似文献   

7.
For investigating the relationship between thermal properties and biodegradability of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), several films of PHBV containing different polyhydroxyvalerate (HV) fractions were subjected to degradation in different conditions for up to 49 days. Differential scanning calorimetry (DSC), thermogravimetry (TG), specimen weight loss and scanning electron microscopy (SEM) were performed to characterize the thermal properties and enzymatic biodegradability of PHBV. The experimental results suggest that the degradation rates of PHBV films increase with decreasing crystallinity; the degradability of PHBV occurring from the surface is very significant under enzymatic hydrolysis; the crystallinity of PHBV decreased with the increase of HV fraction in PHBV; and no decrease in molecular weight was observed in the partially-degraded polymer.  相似文献   

8.
Journal of Material Cycles and Waste Management - The increased consumption of polymers and the consequent generation of waste requires the development of efficient recycling strategies. In this...  相似文献   

9.
A poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) degrading bacterial strain designated as AF-111 was isolated from sewage sludge sample. The bacterium was identified by 16S rRNA gene sequencing. The results revealed that strain AF-111 showed 99 % similarity with Streptomyces althioticus strain NRRL B-3981 and designated as Streptomyces sp. strain AF-111. An extracellular PHBV depolymerase enzyme was produced under optimized conditions and purified through ammonium sulphate fractionation and column chromatography. The enzyme was purified to homogeneity, indicated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and molecular weight was found to be approximately 51 kDa. Effect of temperature, pH, metal ions and inhibitors on the PHBV depolymerase activity was determined. The enzyme was stable at wide range of temperature (35–55 °C) and pH (6–8). PHBV depolymerase was stable in the presence of different metal ions except iron and zinc which had inhibitory effect on depolymerase activity. Both ethylenediamine teteracetic acid and phenylmethyl sulphonyl fluoride strongly inhibited enzyme activity which indicates that this enzyme belongs to the serine hydrolase family like other polyhydroxyalkanoate depolymerases. The results show that a depolymerase from strain AF-111 can effectively degrade PHBV, therefore, it can be applied in the process of biochemical monomer recycling.  相似文献   

10.
This paper describes the chemical degradation of waste poly(ethylene terephthalate) (PET) with polyamines or triethanolamine, the characteristics of the products, and a search for ways to use these products. Solvolysis of the polymer ester bonds was caused by diethylenetriamine, triethylenetetramine, and their mixtures, as well as mixtures of triethylenetetramine and p-phenylenediamine or triethanolamine. Products of aminolysis or aminoglycolysis of PET obtained in reactions performed at 200–210°C (with a molar ratio of the recurrent polymer unit to amine of 1 : 2) have been characterized using nuclear magnetic resonance (NMR). Viscosity and hydroxyl number measurements have been done for PET/triethanolamine products. Substances from aminolytical reactions with polyamines were tested as hardeners for liquid epoxy resins, and the product of polymer aminoglycolysis with triethanolamine was tested as an epoxy resin hardener, e.g., for water-borne paints, and a polyol component for rigid polyurethane foams. The compositions of epoxy resin hardeners have been characterized using DSC and rheometry. Comparative analyses of the hardened epoxy materials have been done on the basis of glass temperature and mechanical properties data, as well as some specific properties of the coating materials and rigid polyurethane foams. Received: September 15, 2000 / Accepted: September 21, 2000  相似文献   

11.
This paper investigates the ability of peanut hulls and peanut hull pellets to adsorb copper from dilute aqueous metal ion solutions in batch and fixed bed systems. The kinetics of copper uptake onto the media have been investigated in batch systems and the influence of pH and particle size on the rate and extent of copper capture determined. The Langmuir and Freundlich isotherm theories were determined; the Langmuir model was found to best represent the equilibrium isotherm data. In normalized kinetic tests at least 75% of copper removal occurred within the first 20 min; 92% removal was effected within the first 50 min. The rate of uptake was optimum within the pH range 5-7.5, and media capacities remained relatively constant at a pH above 4.0. Bench-scale column studies were performed using peanut hull pellets. The overall capacity of pelletized peanut hulls was higher than for unmodified peanut hulls. Due to their demonstrated ability for Cu(II) uptake and favorable structural characteristics, pelletized peanut hulls could gain use as a low-cost, once-through biomass filter medium for copper-bearing waste streams.  相似文献   

12.
Journal of Material Cycles and Waste Management - In the natural rubber latex industries, a huge amount of sludge waste is produced in different processes, which creates potential for use as...  相似文献   

13.
14.
Systematic screening of 45 soil fungi for degradation polyhydroxyalkanoic acids (PHAs) has led to the selection of 6 potent Aspergillus isolates belonging to A. flavus, A. oryzae, A. parasiticus, and A. racemosus. Degradation of PHAs as determined by tube assay method revealed that these Aspergillus spp. were more efficient in degrading poly(3-hydroxybutyrate) [P(3HB)] compared to copolymer of 3-hydroxybutyric acid and 3-hydroxyvaleric acid (P3HB-co-16% 3HV). Moreover, the extent of degradation in mineral base medium was much better than those in complex organic medium. For all the Aspergillus spp. tested, maximum degradation was recorded at a temperature of 37°C with significant inhibition of growth. The optimum pH range for degradation was 6.5–7.0 with degradation being maximum at pH 6.8. The extent of polymer degradation increased with increase in substrate concentration, the optimum concentration for most of the cultures being 0.4% and 0.2% (w/v) for P(3HB) and P(3HB-co-16%3HV) respectively. Supplementation of the degradation medium with additional carbon sources exerted significant inhibitory effect on both P(3HB) and P(3HB-co-16%3HV) degradation.  相似文献   

15.
The effect of lignosulfonate on poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, was studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The PHBV/lignosulfonate samples were prepared by melt mixing in an internal mixer. SEM showed that PHBV/lignosulfonate samples present a cracked surface that is more intense in mixtures with high lignosulfonate proportions. According to DSC, melting and glass transition temperatures of the PHBV matrix decrease with lignosulfonate addition. The same effect was observed for melting enthalpies (ΔHm), which indicates a decrease of crystallinity. TGA showed that thermal stability of PHBV/lignosulfonate samples was shifted to lower temperatures, which indicates the existence of an interaction between the thermal decomposition processes of PHBV and lignosulfonate.  相似文献   

16.
The feasibility of the 3R concept tends to increase the reduction, reuse, and recycling of industrial waste. In this study, we investigated the feasibility of 3R methods to cope with industrial waste generated from high-density polyethylene production in Thailand. The sources and types of waste and existing waste management practices were identified. The four sources of waste generation that we identified were: (1) production, (2) packaging, (3) wastewater treatment, and (4) maintenance, distributed as 47, 46, 4, and 3 %, respectively. The main options for management were: sales to recycling plants (60.41 %), reuse and recycling (25.93 %), and industrial-waste landfilling (10.47 %). After 3R options were introduced, the proposed alternatives were found to be capable of reducing the amount of waste by 33.88 %. The results of life-cycle assessment (LCA) were useful for considering the environmental impact where 3R options were adopted. We also found that net greenhouse gas (GHG) emissions and other environmental impacts could be reduced when industrial waste diverted from landfill is used as alternative fuel. However, the cost of waste disposal seems to be the greatest obstacle for the adoption of 3R methods in Thailand.  相似文献   

17.
Injection molded specimens were prepared by blending poly (hydroxybutyrate-co-valerate) (PHBV) with cornstarch. Blended formulations incorporated 30% or 50% starch in the presence or absence of poly-(ethylene oxide) (PEO), which enhances the adherence of starch granules to PHBV. These formulations were evaluated for their biodegradability in natural compost by measuring changes in physical and chemical properties over a period of 125 days. The degradation of plastic material, as evidenced by weight loss and deterioration in tensile properties, correlated with the amount of starch present in the blends (neat PHBV < 30% starch < 50% starch). Incorporation of PEO into starch-PHBV blends had little or no effect on the rate of weight loss. Starch in blends degraded faster than PHBV and it accelerated PHBV degradation. Also, PHBV did not retard starch degradation. After 125 days of exposure to compost, neat PHBV lost 7% of its weight (0.056% weight loss/day), while the PHBV component of a 50% starch blend lost 41% of its weight (0.328% weight loss/day). PHB and PHV moieties within the copolymer degraded at similar rates, regardless of the presence of starch, as determined by 1H-NMR spectroscopy. GPC analyses revealed that, while the number average molecular weight (Mn) of PHBV in all exposed samples decreased, there was no significant difference in this decrease between neat PHBV as opposed to PHBV blended with starch. SEM showed homogeneously distributed starch granules embedded in a PHBV matrix, typical of a filler material. Starch granules were rapidly depleted during exposure to compost, increasing the surface area of the PHBV matrix.  相似文献   

18.
Solution-grown single crystals of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] were hydrolyzed by polyhydroxybutyrate (PHB) depolymerase from Ralstonia pickettii T1. Enzymatic degradation proceeded from the edges of lamellar crystals, yielding serrated contour and small crystal fragments. Gel permeation chromatography analysis revealed that the molecular weights of the crystals decreased during enzymatic degradation, suggesting that the enzymatic hydrolysis of chain-folding regions at the crystal surfaces occurred in addition to the enzymatic degradation at crystal laterals or edges. After P(3HB-co-4HB) single crystals were aminolysed in 20% aqueous methylamine solution to remove the folded-chain regions and enzymatic degradation by lipase from Rhizopus oryzae to remove 4HB components at crystal surfaces of single crystal aminolyzed, it was found that a small amount (up to ca. 2 mol%) of 4HB component can be incorporated into the P(3HB) mother crystal lattice irrespective of the 4HB content.  相似文献   

19.
The aim of this study was to determine thermal and mechanical properties and applicability of ground chestnut shell waste as a filler for poly(lactic acid) composites. The used amount of filler was ranging from 2.5 to 30 wt%. Spectroscopic analysis of composites and its ingredients was conducted by means of FT-IR method. The mechanical and thermal properties of the composites were determined in the course of static tensile test, Dynstat impact strength test, DMTA analysis, and DSC method. The fractured surface morphology of biocomposites was evaluated by SEM analysis. Incorporation of the filler influenced the overall mechanical properties of the composites characterized by high stiffness and lowered impact resistance. Fabricated composites with different amounts of non-reactive natural waste filler exhibited acceptable mechanical and thermal properties. Therefore, these composites can be used as eco-friendly, biodegradable materials for low-demanding applications.  相似文献   

20.
Journal of Material Cycles and Waste Management - In this paper, the carbonization of multilayer PET containing an oxygen barrier layer was investigated. The oxygen barrier layer was identified as...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号