共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the key determinants of success in biodiversity conservation is how well conservation planning decisions account for the social system in which actions are to be implemented. Understanding elements of how the social and ecological systems interact can help identify opportunities for implementation. Utilizing data from a large‐scale conservation initiative in southwestern of Australia, we explored how a social–ecological system framework can be applied to identify how social and ecological factors interact to influence the opportunities for conservation. Using data from semistructured interviews, an online survey, and publicly available data, we developed a conceptual model of the social–ecological system associated with the conservation of the Fitz‐Stirling region. We used this model to identify the relevant variables (remnants of vegetation, stakeholder presence, collaboration between stakeholders, and their scale of management) that affect the implementation of conservation actions in the region. We combined measures for these variables to ascertain how areas associated with different levels of ecological importance coincided with areas associated with different levels of stakeholder presence, stakeholder collaboration, and scales of management. We identified areas that could benefit from different implementation strategies, from those suitable for immediate conservation action to areas requiring implementation over the long term to increase on‐the‐ground capacity and identify mechanisms to incentivize implementation. The application of a social–ecological framework can help conservation planners and practitioners facilitate the integration of ecological and social data to inform the translation of priorities for action into implementation strategies that account for the complexities of conservation problems in a focused way. 相似文献
2.
Erica S. Nielsen Maria Beger Romina Henriques Kimberly A. Selkoe Sophie von der Heyden 《Conservation biology》2017,31(4):872-882
Growing threats to biodiversity and global alteration of habitats and species distributions make it increasingly necessary to consider evolutionary patterns in conservation decision making. Yet, there is no clear‐cut guidance on how genetic features can be incorporated into conservation‐planning processes, despite multiple molecular markers and several genetic metrics for each marker type to choose from. Genetic patterns differ between species, but the potential tradeoffs among genetic objectives for multiple species in conservation planning are currently understudied. We compared spatial conservation prioritizations derived from 2 metrics of genetic diversity (nucleotide and haplotype diversity) and 2 metrics of genetic isolation (private haplotypes and local genetic differentiation) in mitochondrial DNA of 5 marine species. We compared outcomes of conservation plans based only on habitat representation with plans based on genetic data and habitat representation. Fewer priority areas were selected for conservation plans based solely on habitat representation than on plans that included habitat and genetic data. All 4 genetic metrics selected approximately similar conservation‐priority areas, which is likely a result of prioritizing genetic patterns across a genetically diverse array of species. Largely, our results suggest that multispecies genetic conservation objectives are vital to creating protected‐area networks that appropriately preserve community‐level evolutionary patterns. 相似文献
3.
Species hybrids have long been undervalued in conservation and are often perceived as a threat to pure species. Recently, the conservation value of hybrids, especially those of natural origin, has gained recognition; however, hybrid conservation remains controversial. We reviewed hybrid management policies, including laws, regulations, and management protocols, from a variety of organizations, primarily in Canada and the United States. We found that many policies are based on limited ethical and ecological considerations and provide little opportunity for hybrid conservation. In most policies, hybrids are either unrepresented or considered a threat to conservation goals. This is problematic because our review of the hybrid conservation literature identified many ethical and ecological considerations relevant to determining the conservation value of a hybrid, all of which are management‐context specific. We also noted a lack of discussion of the ethical considerations regarding hybrid conservation. Based on these findings, we created a policy framework outlining situations in which hybrids could be eligible for conservation in Canada and the United States. The framework comprises a decision tree that helps users determine whether a hybrid should be eligible for conservation based on multiple ecological and ethical considerations. The framework may be applied to any hybrid and is flexible in that it accommodates context‐specific management by allowing different options if a hybrid is a threat to or could benefit conservation goals. The framework can inform policy makers and conservationists in decision‐making processes regarding hybrid conservation by providing a systematic set of decision criteria and guidance on additional criteria to be considered in cases of uncertainty, and it fills a policy gap that limits current hybrid management. 相似文献
4.
There is increasing recognition among conservation scientists that long‐term conservation outcomes could be improved through better integration of evolutionary theory into management practices. Despite concerns that the importance of key concepts emerging from evolutionary theory (i.e., evolutionary principles and processes) are not being recognized by managers, there has been little effort to determine the level of integration of evolutionary theory into conservation policy and practice. We assessed conservation policy at 3 scales (international, national, and provincial) on 3 continents to quantify the degree to which key evolutionary concepts, such as genetic diversity and gene flow, are being incorporated into conservation practice. We also evaluated the availability of clear guidance within the applied evolutionary biology literature as to how managers can change their management practices to achieve better conservation outcomes. Despite widespread recognition of the importance of maintaining genetic diversity, conservation policies provide little guidance about how this can be achieved in practice and other relevant evolutionary concepts, such as inbreeding depression, are mentioned rarely. In some cases the poor integration of evolutionary concepts into management reflects a lack of decision‐support tools in the literature. Where these tools are available, such as risk‐assessment frameworks, they are not being adopted by conservation policy makers, suggesting that the availability of a strong evidence base is not the only barrier to evolutionarily enlightened management. We believe there is a clear need for more engagement by evolutionary biologists with policy makers to develop practical guidelines that will help managers make changes to conservation practice. There is also an urgent need for more research to better understand the barriers to and opportunities for incorporating evolutionary theory into conservation practice. 相似文献
5.
PAUL D. HIRSCH WILLIAM M. ADAMS J. PETER BROSIUS ASIM ZIA NINO BARIOLA JUAN LUIS DAMMERT 《Conservation biology》2011,25(2):259-264
Abstract: There is a growing recognition that conservation often entails trade‐offs. A focus on trade‐offs can open the way to more complete consideration of the variety of positive and negative effects associated with conservation initiatives. In analyzing and working through conservation trade‐offs, however, it is important to embrace the complexities inherent in the social context of conservation. In particular, it is important to recognize that the consequences of conservation activities are experienced, perceived, and understood differently from different perspectives, and that these perspectives are embedded in social systems and preexisting power relations. We illustrate the role of trade‐offs in conservation and the complexities involved in understanding them with recent debates surrounding REDD (Reducing Emissions from Deforestation and Degradation), a global conservation policy designed to create incentives to reduce tropical deforestation. Often portrayed in terms of the multiple benefits it may provide: poverty alleviation, biodiversity conservation, and climate‐change mitigation; REDD may involve substantial trade‐offs. The gains of REDD may be associated with a reduction in incentives for industrialized countries to decrease carbon emissions; relocation of deforestation to places unaffected by REDD; increased inequality in places where people who make their livelihood from forests have insecure land tenure; loss of biological and cultural diversity that does not directly align with REDD measurement schemes; and erosion of community‐based means of protecting forests. We believe it is important to acknowledge the potential trade‐offs involved in conservation initiatives such as REDD and to examine these trade‐offs in an open and integrative way that includes a variety of tools, methods, and points of view. 相似文献
6.
JAMES N. SANCHIRICO MICHAEL R. SPRINGBORN MARK W. SCHWARTZ ANGELA N. DOERR 《Conservation biology》2014,28(2):361-371
Despite decades of discussion and implementation, conservation monitoring remains a challenge. Many current solutions in the literature focus on improving the science or making more structured decisions. These insights are important but incomplete in accounting for the politics and economics of the conservation decisions informed by monitoring. Our novel depiction of the monitoring enterprise unifies insights from multiple disciplines (conservation, operations research, economics, and policy) and highlights many underappreciated factors that affect the expected benefits of monitoring. For example, there must be a strong link between the specific needs of decision makers and information gathering. Furthermore, the involvement of stakeholders other than scientists and research managers means that new information may not be interpreted and acted upon as expected. While answering calls for sharply delineated objectives will clearly add focus to monitoring efforts, for practical reasons, high‐level goals may purposefully be left vague, to facilitate other necessary steps in the policy process. We use the expanded depiction of the monitoring process to highlight problems of cooperation and conflict. We critique calls to invest in monitoring for the greater good by arguing that incentives are typically lacking. Although the benefits of learning accrued within a project (e.g., improving management) provide incentives for investing in some monitoring, it is unrealistic, in general, to expect managers to add potentially costly measures to generate shared benefits. In the traditional linear model of the role of science in policy decisions, monitoring reduces uncertainty and decision makers are rational, unbiased consumers of the science. However, conservation actions increasingly involve social conflict. Drawing insights from political science, we argue that in high‐conflict situations, it is necessary to address the conflict prior to monitoring. Las Inversiones y el Proceso de Políticas en el Monitoreo de la Conservación Sanchirico et al. 相似文献
7.
Nathan J. Bennett Robin Roth Sarah C. Klain Kai M. A. Chan Douglas A. Clark Georgina Cullman Graham Epstein Michael Paul Nelson Richard Stedman Tara L. Teel Rebecca E. W. Thomas Carina Wyborn Deborah Curran Alison Greenberg John Sandlos Diogo Veríssimo 《Conservation biology》2017,31(1):56-66
Despite broad recognition of the value of social sciences and increasingly vocal calls for better engagement with the human element of conservation, the conservation social sciences remain misunderstood and underutilized in practice. The conservation social sciences can provide unique and important contributions to society's understanding of the relationships between humans and nature and to improving conservation practice and outcomes. There are 4 barriers—ideological, institutional, knowledge, and capacity—to meaningful integration of the social sciences into conservation. We provide practical guidance on overcoming these barriers to mainstream the social sciences in conservation science, practice, and policy. Broadly, we recommend fostering knowledge on the scope and contributions of the social sciences to conservation, including social scientists from the inception of interdisciplinary research projects, incorporating social science research and insights during all stages of conservation planning and implementation, building social science capacity at all scales in conservation organizations and agencies, and promoting engagement with the social sciences in and through global conservation policy‐influencing organizations. Conservation social scientists, too, need to be willing to engage with natural science knowledge and to communicate insights and recommendations clearly. We urge the conservation community to move beyond superficial engagement with the conservation social sciences. A more inclusive and integrative conservation science—one that includes the natural and social sciences—will enable more ecologically effective and socially just conservation. Better collaboration among social scientists, natural scientists, practitioners, and policy makers will facilitate a renewed and more robust conservation. Mainstreaming the conservation social sciences will facilitate the uptake of the full range of insights and contributions from these fields into conservation policy and practice. 相似文献
8.
The establishment of protected areas is a critical strategy for conserving biodiversity. Key policy directives like the Aichi targets seek to expand protected areas to 17% of Earth's land surface, with calls by some conservation biologists for much more. However, in places such as the United States, Germany, and Australia, attempts to increase protected areas are meeting strong resistance from communities, industry groups, and governments. We examined case studies of such resistance in Victoria, Australia, Bavaria, Germany, and Florida, United States. We considered 4 ways to tackle this problem. First, broaden the case for protected areas beyond nature conservation to include economic, human health, and other benefits, and translate these into a persuasive business case for protected areas. Second, better communicate the conservation values of protected areas. This should include highlighting how many species, communities, and ecosystems have been conserved by protected areas and the counterfactual (i.e., what would have been lost without protected area establishment). Third, consider zoning of activities to ensure the maintenance of effective management. Finally, remind citizens to think about conservation when they vote, including holding politicians accountable for their environmental promises. Without tackling resistance to expanding the protected estate, it will be impossible to reach conservation targets, and this will undermine attempts to stem the global extinction crisis. 相似文献
9.
Patrick J. Comer Robert L. Pressey Malcolm L. Hunter JR. Carrie A. Schloss Steven C. Buttrick Nicole E. Heller John M. Tirpak Daniel P. Faith Molly S. Cross Mark L. Shaffer 《Conservation biology》2015,29(3):692-701
In a rapidly changing climate, conservation practitioners could better use geodiversity in a broad range of conservation decisions. We explored selected avenues through which this integration might improve decision making and organized them within the adaptive management cycle of assessment, planning, implementation, and monitoring. Geodiversity is seldom referenced in predominant environmental law and policy. With most natural resource agencies mandated to conserve certain categories of species, agency personnel are challenged to find ways to practically implement new directives aimed at coping with climate change while retaining their species‐centered mandate. Ecoregions and ecological classifications provide clear mechanisms to consider geodiversity in plans or decisions, the inclusion of which will help foster the resilience of conservation to climate change. Methods for biodiversity assessment, such as gap analysis, climate change vulnerability analysis, and ecological process modeling, can readily accommodate inclusion of a geophysical component. We adapted others’ approaches for characterizing landscapes along a continuum of climate change vulnerability for the biota they support from resistant, to resilient, to susceptible, and to sensitive and then summarized options for integrating geodiversity into planning in each landscape type. In landscapes that are relatively resistant to climate change, options exist to fully represent geodiversity while ensuring that dynamic ecological processes can change over time. In more susceptible landscapes, strategies aiming to maintain or restore ecosystem resilience and connectivity are paramount. Implementing actions on the ground requires understanding of geophysical constraints on species and an increasingly nimble approach to establishing management and restoration goals. Because decisions that are implemented today will be revisited and amended into the future, increasingly sophisticated forms of monitoring and adaptation will be required to ensure that conservation efforts fully consider the value of geodiversity for supporting biodiversity in the face of a changing climate. 相似文献
10.
Bistra Dilkina Rachel Houtman Carla P. Gomes Claire A. Montgomery Kevin S. McKelvey Katherine Kendall Tabitha A. Graves Richard Bernstein Michael K. Schwartz 《Conservation biology》2017,31(1):192-202
Conservation biologists recognize that a system of isolated protected areas will be necessary but insufficient to meet biodiversity objectives. Current approaches to connecting core conservation areas through corridors consider optimal corridor placement based on a single optimization goal: commonly, maximizing the movement for a target species across a network of protected areas. We show that designing corridors for single species based on purely ecological criteria leads to extremely expensive linkages that are suboptimal for multispecies connectivity objectives. Similarly, acquiring the least‐expensive linkages leads to ecologically poor solutions. We developed algorithms for optimizing corridors for multispecies use given a specific budget. We applied our approach in western Montana to demonstrate how the solutions may be used to evaluate trade‐offs in connectivity for 2 species with different habitat requirements, different core areas, and different conservation values under different budgets. We evaluated corridors that were optimal for each species individually and for both species jointly. Incorporating a budget constraint and jointly optimizing for both species resulted in corridors that were close to the individual species movement‐potential optima but with substantial cost savings. Our approach produced corridors that were within 14% and 11% of the best possible corridor connectivity for grizzly bears (Ursus arctos) and wolverines (Gulo gulo), respectively, and saved 75% of the cost. Similarly, joint optimization under a combined budget resulted in improved connectivity for both species relative to splitting the budget in 2 to optimize for each species individually. Our results demonstrate economies of scale and complementarities conservation planners can achieve by optimizing corridor designs for financial costs and for multiple species connectivity jointly. We believe that our approach will facilitate corridor conservation by reducing acquisition costs and by allowing derived corridors to more closely reflect conservation priorities. 相似文献
11.
Rob J. Lewis Francesco de Bello Jonathan A. Bennett Pavel Fibich Genevieve E. Finerty Lars Götzenberger Inga Hiiesalu Liis Kasari Jan Lepš Maria Májeková Ondřej Mudrák Kersti Riibak Argo Ronk Terezie Rychtecká Alena Vitová Meelis Pärtel 《Conservation biology》2017,31(1):40-47
Linking diversity to biological processes is central for developing informed and effective conservation decisions. Unfortunately, observable patterns provide only a proportion of the information necessary for fully understanding the mechanisms and processes acting on a particular population or community. We suggest conservation managers use the often overlooked information relative to species absences and pay particular attention to dark diversity (i.e., a set of species that are absent from a site but that could disperse to and establish there, in other words, the absent portion of a habitat‐specific species pool). Together with existing ecological metrics, concepts, and conservation tools, dark diversity can be used to complement and further develop conservation prioritization and management decisions through an understanding of biodiversity relativized by its potential (i.e., its species pool). Furthermore, through a detailed understanding of the population, community, and functional dark diversity, the restoration potential of degraded habitats can be more rigorously assessed and so to the likelihood of successful species invasions. We suggest the application of the dark diversity concept is currently an underappreciated source of information that is valuable for conservation applications ranging from macroscale conservation prioritization to more locally scaled restoration ecology and the management of invasive species. 相似文献
12.
Fishing‐gear restrictions and biomass gains for coral reef fishes in marine protected areas
下载免费PDF全文

Stuart J. Campbell Graham J. Edgar Rick D. Stuart‐Smith German Soler Amanda E. Bates 《Conservation biology》2018,32(2):401-410
Considerable empirical evidence supports recovery of reef fish populations with fishery closures. In countries where full exclusion of people from fishing may be perceived as inequitable, fishing‐gear restrictions on nonselective and destructive gears may offer socially relevant management alternatives to build recovery of fish biomass. Even so, few researchers have statistically compared the responses of tropical reef fisheries to alternative management strategies. We tested for the effects of fishery closures and fishing gear restrictions on tropical reef fish biomass at the community and family level. We conducted 1,396 underwater surveys at 617 unique sites across a spatial hierarchy within 22 global marine ecoregions that represented 5 realms. We compared total biomass across local fish assemblages and among 20 families of reef fishes inside marine protected areas (MPAs) with different fishing restrictions: no‐take, hook‐and‐line fishing only, several fishing gears allowed, and sites open to all fishing gears. We included a further category representing remote sites, where fishing pressure is low. As expected, full fishery closures, (i.e., no‐take zones) most benefited community‐ and family‐level fish biomass in comparison with restrictions on fishing gears and openly fished sites. Although biomass responses to fishery closures were highly variable across families, some fishery targets (e.g., Carcharhinidae and Lutjanidae) responded positively to multiple restrictions on fishing gears (i.e., where gears other than hook and line were not permitted). Remoteness also positively affected the response of community‐level fish biomass and many fish families. Our findings provide strong support for the role of fishing restrictions in building recovery of fish biomass and indicate important interactions among fishing‐gear types that affect biomass of a diverse set of reef fish families. 相似文献
13.
Samuel Veloz Leonardo Salas Bob Altman John Alexander Dennis Jongsomjit Nathan Elliott Grant Ballard 《Conservation biology》2015,29(4):1217-1227
Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High‐density model Zonation rankings protected more individuals per species when networks protected the highest priority 10‐40% of the landscape. Compared with density‐based models, the occurrence‐based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density‐based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts. 相似文献
14.
CHRIS SANDBROOK IVAN R. SCALES BHASKAR VIRA WILLIAM M. ADAMS 《Conservation biology》2011,25(2):285-294
Abstract: Debate on the values that underpin conservation science is rarely based on empirical analysis of the values conservation professionals actually hold. We used Q methodology to investigate the values held by international conservation professionals who attended the annual Student Conference in Conservation Science at the University of Cambridge (U.K.) in 2008 and 2009. The methodology offers a quantitative means of examining human subjectivity. It differs from standard opinion surveys in that individual respondents record the way they feel about statements relative to other statements, which forces them to focus their attention on the issues they believe are most important. The analysis extracts the diverse viewpoints of the respondents, and factor analysis is used to reduce the viewpoints to a smaller set of factors that reflect shared ways of thinking. The junior conservation professionals attending the conference did not share a unifying set of core values; rather, they held a complex series of ideas and a plurality of opinions about conservation and how it should be pursued. This diversity of values empirically challenges recent proposals for conservation professionals to unite behind a single philosophy. Attempts to forge an artificial consensus may be counterproductive to the overall goals conservation professionals are pursuing. 相似文献
15.
JULIANE GEYER IRIS KIEFER STEFAN KREFT VERONICA CHAVEZ NICK SALAFSKY FLORIAN JELTSCH PIERRE L. IBISCH 《Conservation biology》2011,25(4):708-715
Abstract: Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate‐change‐induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate‐change‐related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate‐change‐induced stresses. 相似文献
16.
Systematic reviews comprehensively summarize evidence about the effectiveness of conservation interventions. We investigated the contribution to management decisions made by this growing body of literature. We identified 43 systematic reviews of conservation evidence, 23 of which drew some concrete conclusions relevant to management. Most reviews addressed conservation interventions relevant to policy decisions; only 35% considered practical on‐the‐ground management interventions. The majority of reviews covered only a small fraction of the geographic and taxonomic breadth they aimed to address (median = 13% of relevant countries and 16% of relevant taxa). The likelihood that reviews contained at least some implications for management tended to increase as geographic coverage increased and to decline as taxonomic breadth increased. These results suggest the breadth of a systematic review requires careful consideration. Reviews identified a mean of 312 relevant primary studies but excluded 88% of these because of deficiencies in design or a failure to meet other inclusion criteria. Reviews summarized on average 284 data sets and 112 years of research activity, yet the likelihood that their results had at least some implications for management did not increase as the amount of primary research summarized increased. In some cases, conclusions were elusive despite the inclusion of hundreds of data sets and years of cumulative research activity. Systematic reviews are an important part of the conservation decision making tool kit, although we believe the benefits of systematic reviews could be significantly enhanced by increasing the number of reviews focused on questions of direct relevance to on‐the‐ground managers; defining a more focused geographic and taxonomic breadth that better reflects available data; including a broader range of evidence types; and appraising the cost‐effectiveness of interventions. Contribuciones de las Revisiones Sistemáticas a las Decisiones de Manejo 相似文献
17.
In systematic conservation planning, species distribution data for all sites in a planning area are used to prioritize each site in terms of the site's importance toward meeting the goal of species representation. But comprehensive species data are not available in most planning areas and would be expensive to acquire. As a shortcut, ecologists use surrogates, such as occurrences of birds or another well‐surveyed taxon, or land types defined from remotely sensed data, in the hope that sites that represent the surrogates also represent biodiversity. Unfortunately, surrogates have not performed reliably. We propose a new type of surrogate, predicted importance, that can be developed from species data for a q% subset of sites. With species data from this subset of sites, importance can be modeled as a function of abiotic variables available at no charge for all terrestrial areas on Earth. Predicted importance can then be used as a surrogate to prioritize all sites. We tested this surrogate with 8 sets of species data. For each data set, we used a q% subset of sites to model importance as a function of abiotic variables, used the resulting function to predict importance for all sites, and evaluated the number of species in the sites with highest predicted importance. Sites with the highest predicted importance represented species efficiently for all data sets when q = 25% and for 7 of 8 data sets when q = 20%. Predicted importance requires less survey effort than direct selection for species representation and meets representation goals well compared with other surrogates currently in use. This less expensive surrogate may be useful in those areas of the world that need it most, namely tropical regions with the highest biodiversity, greatest biodiversity loss, most severe lack of inventory data, and poorly developed protected area networks. 相似文献
18.
Bias in protected‐area location and its effects on long‐term aspirations of biodiversity conventions
下载免费PDF全文

Oscar Venter Ainhoa Magrach Nick Outram Carissa Joy Klein Hugh P. Possingham Moreno Di Marco James E.M. Watson 《Conservation biology》2018,32(1):127-134
To contribute to the aspirations of recent international biodiversity conventions, protected areas (PAs) must be strategically located and not simply established on economically marginal lands as they have in the past. With refined international commitments under the Convention on Biological Diversity to target protected areas in places of “importance to biodiversity,” perhaps they may now be. We analyzed location biases in PAs globally over historic (pre‐2004) and recent periods. Specifically, we examined whether the location of protected areas are more closely associated with high concentrations of threatened vertebrate species or with areas of low agricultural opportunity costs. We found that both old and new protected areas did not target places with high concentrations of threatened vertebrate species. Instead, they appeared to be established in locations that minimize conflict with agriculturally suitable lands. This entrenchment of past trends has substantial implications for the contributions these protected areas are making to international commitments to conserve biodiversity. If protected‐area growth from 2004 to 2014 had strategically targeted unrepresented threatened vertebrates, >30 times more species (3086 or 2553 potential vs. 85 actual new species represented) would have been protected for the same area or the same cost as the actual expansion. With the land available for conservation declining, nations must urgently focus new protection on places that provide for the conservation outcomes outlined in international treaties. 相似文献
19.
Understanding the effects of different social data on selecting priority conservation areas
下载免费PDF全文

Conservation success is contingent on assessing social and environmental factors so that cost‐effective implementation of strategies and actions can be placed in a broad social–ecological context. Until now, the focus has been on how to include spatially explicit social data in conservation planning, whereas the value of different kinds of social data has received limited attention. In a regional systematic conservation planning case study in Australia, we examined the spatial concurrence of a range of spatially explicit social values and land‐use preferences collected using a public participation geographic information system and biological data. We used Zonation to integrate the social data with the biological data in a series of spatial‐prioritization scenarios to determine the effect of the different types of social data on spatial prioritization compared with biological data alone. The type of social data (i.e., conservation opportunities or constraints) significantly affected spatial prioritization outcomes. The integration of social values and land‐use preferences under different scenarios was highly variable and generated spatial prioritizations 1.2–51% different from those based on biological data alone. The inclusion of conservation‐compatible values and preferences added relatively few new areas to conservation priorities, whereas including noncompatible economic values and development preferences as costs significantly changed conservation priority areas (48.2% and 47.4%, respectively). Based on our results, a multifaceted conservation prioritization approach that combines spatially explicit social data with biological data can help conservation planners identify the type of social data to collect for more effective and feasible conservation actions. 相似文献
20.
MURRAY A. RUDD 《Conservation biology》2011,25(5):860-866
Abstract: Conservation scientists are concerned about the apparent lack of impact their research is having on policy. By better aligning research with policy needs, conservation science might become more relevant to policy and increase its real‐world salience in the conservation of biological diversity. Consequently, some conservation scientists have embarked on a variety of exercises to identify research questions that, if answered, would provide the evidence base with which to develop and implement effective conservation policies. I synthesized two existing approaches to conceptualizing research impacts. One widely used approach classifies the impacts of research as conceptual, instrumental, and symbolic. Conceptual impacts occur when policy makers are sensitized to new issues and change their beliefs or thinking. Instrumental impacts arise when scientific research has a direct effect on policy decisions. The use of scientific research results to support established policy positions are symbolic impacts. The second approach classifies research issues according to whether scientific knowledge is developed fully and whether the policy issue has been articulated clearly. I believe exercises to identify important research questions have objectives of increasing the clarity of policy issues while strengthening science–policy interactions. This may facilitate the transmission of scientific knowledge to policy makers and, potentially, accelerate the development and implementation of effective conservation policy. Other, similar types of exercises might also be useful. For example, identification of visionary science questions independent of current policy needs, prioritization of best practices for transferring scientific knowledge to policy makers, and identification of questions about human values and their role in political processes could all help advance real‐world conservation science. It is crucial for conservation scientists to understand the wide variety of ways in which their research can affect policy and be improved systematically. 相似文献