首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Adriatic and Ionian Region is an important area for both strategic maritime development and biodiversity conservation in the European Union (EU). However, given that both EU and non‐EU countries border the sea, multiple legal and regulatory frameworks operate at different scales, which can hinder the coordinated long‐term sustainable development of the region. Transboundary marine spatial planning can help overcome these challenges by building consensus on planning objectives and making the trade‐offs between biodiversity conservation and its influence on economically important sectors more explicit. We address this challenge by developing and testing 4 spatial prioritization strategies with the decision‐support tool Marxan, which meets targets for biodiversity conservation while minimizing impacts to users. We evaluated these strategies in terms of how priority areas shift under different scales of target setting (e.g., regional vs. country level). We also examined the trade‐off between cost‐efficiency and how equally solutions represent countries and maritime industries (n = 14) operating in the region with the protection‐equality metric. We found negligible differences in where priority conservation areas were located when we set targets for biodiversity at the regional versus country scale. Conversely, the prospective impacts on industries, when considered as costs to be minimized, were highly divergent across scenarios and biased the placement of protection toward industries located in isolation or where there were few other industries. We recommend underpinning future marine spatial planning efforts in the region through identification of areas of national significance, transboundary areas requiring cooperation between countries, and areas where impacts on maritime industries require careful consideration of the trade‐off between biodiversity conservation and socioeconomic objectives.  相似文献   

2.
The frequently discussed gap between conservation science and practice is manifest in the gap between spatial conservation prioritization plans and their implementation. We analyzed the research‐implementation gap of one zoning case by comparing results of a spatial prioritization analysis aimed at avoiding ecological impact of peat mining in a regional zoning process with the final zoning plan. We examined the relatively complex planning process to determine the gaps among research, zoning, and decision making. We quantified the ecological costs of the differing trade‐offs between ecological and socioeconomic factors included in the different zoning suggestions by comparing the landscape‐level loss of ecological features (species occurrences, habitat area, etc.) between the different solutions for spatial allocation of peat mining. We also discussed with the scientists and planners the reasons for differing zoning suggestions. The implemented plan differed from the scientists suggestion in that its focus was individual ecological features rather than all the ecological features for which there were data; planners and decision makers considered effects of peat mining on areas not included in the prioritization analysis; zoning was not truly seen as a resource‐allocation process and not emphasized in general minimizing ecological losses while satisfying economic needs (peat‐mining potential); and decision makers based their prioritization of sites on site‐level information showing high ecological value and on single legislative factors instead of finding a cost‐effective landscape‐level solution. We believe that if the zoning and decision‐making processes are very complex, then the usefulness of science‐based prioritization tools is likely to be reduced. Nevertheless, we found that high‐end tools were useful in clearly exposing trade‐offs between conservation and resource utilization.  相似文献   

3.
The efficacy of protected areas varies, partly because socioeconomic factors are not sufficiently considered in planning and management. Although integrating socioeconomic factors into systematic conservation planning is increasingly advocated, research is needed to progress from recognition of these factors to incorporating them effectively in spatial prioritization of protected areas. We evaluated 2 key aspects of incorporating socioeconomic factors into spatial prioritization: treatment of socioeconomic factors as costs or objectives and treatment of stakeholders as a single group or multiple groups. Using as a case study the design of a system of no‐take marine protected areas (MPAs) in Kubulau, Fiji, we assessed how these aspects affected the configuration of no‐take MPAs in terms of trade‐offs between biodiversity objectives, fisheries objectives, and equity in catch losses among fisher stakeholder groups. The achievement of fisheries objectives and equity tended to trade‐off concavely with increasing biodiversity objectives, indicating that it is possible to achieve low to mid‐range biodiversity objectives with relatively small losses to fisheries and equity. Importantly, the extent of trade‐offs depended on the method used to incorporate socioeconomic data and was least severe when objectives were set for each fisher stakeholder group explicitly. We found that using different methods to incorporate socioeconomic factors that require similar data and expertise can result in plans with very different impacts on local stakeholders.  相似文献   

4.
Abstract: The establishment of marine protected areas is often viewed as a conflict between conservation and fishing. We considered consumptive and nonconsumptive interests of multiple stakeholders (i.e., fishers, scuba divers, conservationists, managers, scientists) in the systematic design of a network of marine protected areas along California's central coast in the context of the Marine Life Protection Act Initiative. With advice from managers, administrators, and scientists, a representative group of stakeholders defined biodiversity conservation and socioeconomic goals that accommodated social needs and conserved marine ecosystems, consistent with legal requirements. To satisfy biodiversity goals, we targeted 11 marine habitats across 5 depth zones, areas of high species diversity, and areas containing species of special status. We minimized adverse socioeconomic impacts by minimizing negative effects on fishers. We included fine‐scale fishing data from the recreational and commercial fishing sectors across 24 fisheries. Protected areas designed with consideration of commercial and recreational fisheries reduced potential impact to the fisheries approximately 21% more than protected areas designed without consideration of fishing effort and resulted in a small increase in the total area protected (approximately 3.4%). We incorporated confidential fishing data without revealing the identity of specific fisheries or individual fishing grounds. We sited a portion of the protected areas near land parks, marine laboratories, and scientific monitoring sites to address nonconsumptive socioeconomic goals. Our results show that a stakeholder‐driven design process can use systematic conservation‐planning methods to successfully produce options for network design that satisfy multiple conservation and socioeconomic objectives. Marine protected areas that incorporate multiple stakeholder interests without compromising biodiversity conservation goals are more likely to protect marine ecosystems.  相似文献   

5.
Systematic conservation planning optimizes trade‐offs between biodiversity conservation and human activities by accounting for socioeconomic costs while aiming to achieve prescribed conservation objectives. However, the most cost‐efficient conservation plan can be very dissimilar to any other plan achieving the set of conservation objectives. This is problematic under conditions of implementation uncertainty (e.g., if all or part of the plan becomes unattainable). We determined through simulations of parallel implementation of conservation plans and habitat loss the conditions under which optimal plans have limited chances of implementation and where implementation attempts would fail to meet objectives. We then devised a new, flexible method for identifying conservation priorities and scheduling conservation actions. This method entails generating a number of alternative plans, calculating the similarity in site composition among all plans, and selecting the plan with the highest density of neighboring plans in similarity space. We compared our method with the classic method that maximizes cost efficiency with synthetic and real data sets. When implementation was uncertain—a common reality—our method provided higher likelihood of achieving conservation targets. We found that χ, a measure of the shortfall in objectives achieved by a conservation plan if the plan could not be implemented entirely, was the main factor determining the relative performance of a flexibility enhanced approach to conservation prioritization. Our findings should help planning authorities prioritize conservation efforts in the face of uncertainty about future condition and availability of sites.  相似文献   

6.
Marine protected areas (MPAs) are the cornerstone of most marine conservation strategies, but the effectiveness of each one partly depends on its size and distance to other MPAs in a network. Despite this, current recommendations on ideal MPA size and spacing vary widely, and data are lacking on how these constraints might influence the overall spatial characteristics, socio‐economic impacts, and connectivity of the resultant MPA networks. To address this problem, we tested the impact of applying different MPA size constraints in English waters. We used the Marxan spatial prioritization software to identify a network of MPAs that met conservation feature targets, whilst minimizing impacts on fisheries; modified the Marxan outputs with the MinPatch software to ensure each MPA met a minimum size; and used existing data on the dispersal distances of a range of species found in English waters to investigate the likely impacts of such spatial constraints on the region's biodiversity. Increasing MPA size had little effect on total network area or the location of priority areas, but as MPA size increased, fishing opportunity cost to stakeholders increased. In addition, as MPA size increased, the number of closely connected sets of MPAs in networks and the average distance between neighboring MPAs decreased, which consequently increased the proportion of the planning region that was isolated from all MPAs. These results suggest networks containing large MPAs would be more viable for the majority of the region's species that have small dispersal distances, but dispersal between MPA sets and spill‐over of individuals into unprotected areas would be reduced. These findings highlight the importance of testing the impact of applying different MPA size constraints because there are clear trade‐offs that result from the interaction of size, number, and distribution of MPAs in a network.  相似文献   

7.
8.
Abstract: Global declines in biodiversity and the widespread degradation of ecosystem services have led to urgent calls to safeguard both. Responses to this urgency include calls to integrate the needs of ecosystem services and biodiversity into the design of conservation interventions. The benefits of such integration are purported to include improvements in the justification and resources available for these interventions. Nevertheless, additional costs and potential trade‐offs remain poorly understood in the design of interventions that seek to conserve biodiversity and ecosystem services. We sought to investigate the synergies and trade‐offs in safeguarding ecosystem services and biodiversity in South Africa's Little Karoo. We used data on three ecosystem services—carbon storage, water recharge, and fodder provision—and data on biodiversity to examine several conservation planning scenarios. First, we investigated the amount of each ecosystem service captured incidentally by a conservation plan to meet targets for biodiversity only while minimizing opportunity costs. We then examined the costs of adding targets for ecosystem services into this conservation plan. Finally, we explored trade‐offs between biodiversity and ecosystem service targets at a fixed cost. At least 30% of each ecosystem service was captured incidentally when all of biodiversity targets were met. By including data on ecosystem services, we increased the amount of services captured by at least 20% for all three services without additional costs. When biodiversity targets were reduced by 8%, an extra 40% of fodder provision and water recharge were obtained and 58% of carbon could be captured for the same cost. The opportunity cost (in terms of forgone production) of safeguarding 100% of the biodiversity targets was about US$500 million. Our results showed that with a small decrease in biodiversity target achievement, substantial gains for the conservation of ecosystem services can be achieved within our biodiversity priority areas for no extra cost.  相似文献   

9.
Marine-protected areas (MPAs) are vital to marine conservation, but their coverage and distribution is insufficient to address declines in global biodiversity and fisheries. In response, many countries have committed through the Aichi Target 11 of the Convention on Biological Diversity to conserve 10% of the marine environment through ecologically representative and equitably managed MPAs by 2020. The rush to fulfill this commitment has raised concerns on how increasing MPA coverage will affect other elements of Target 11, including representation and equity. We examined a Philippines case study to assess and compare 3 MPA planning approaches for biodiversity representation and equitable distribution of costs to small-scale fishers. In the opportunistic approach, MPAs were identified and supported by coastal communities. The donor-assisted approach used local knowledge to select MPAs through a national-scale and donor-assisted conservation project. The systematic conservation planning approach identified MPA locations with the spatial prioritization software Marxan with Zones to achieve biodiversity objectives with minimal costs to fishers. We collected spatial data on biodiversity and fisheries features and performed a gap analysis to evaluate MPAs derived from different approaches. We assessed representation based on the proportion of biodiversity features conserved in MPAs and distribution equity by the distribution of opportunity costs (fishing areas lost in MPAs) among fisher stakeholder groups. The opportunistic approach did not ineffectively represent biodiversity and resulted in inequitable costs to fishers. The donor-assisted approach affected fishers disproportionately but provided near-optimal regional representation. Only the systematic approach achieved all representation targets with minimal and equitable costs to fishers. Our results demonstrate the utility of systematic conservation planning to address key elements of Target 11 and highlight opportunities (e.g., integration of local and scientific knowledge can address representation and equity concerns) and pitfalls (e.g., insufficient stakeholder considerations can exacerbate social inequalities) for planning MPAs in similar contexts.  相似文献   

10.
Finding sustainable ways to increase the amount of private land protected for biodiversity is challenging for many conservation organizations. In some countries, organizations use revolving‐fund programs, whereby land is purchased and then sold to conservation‐minded owners under condition they enter into a conservation covenant or easement. The sale proceeds are used to purchase, protect, and sell additional properties, incrementally increasing the amount of protected private land. Because the effectiveness of this approach relies on selecting appropriate properties, we explored factors currently considered by practitioners and how these are integrated into decision making. We conducted exploratory, semistructured interviews with managers from each of the 5 major revolving funds in Australia. Responses indicated although conservation factors are important, financial and social factors are also highly influential. A major determinant was whether the property could be resold within a reasonable period at a price that replenishes the fund. To facilitate resale, often selected properties include the potential for the construction of a dwelling. Practitioners face with clear trade‐offs between conservation, financial, amenity, and other factors in selecting properties and 3 main challenges: recovering the costs of acquisition, protection, and resale; reselling the property; and meeting conservation goals. Our findings suggest the complexity of these decisions may constrain revolving‐fund effectiveness. Drawing from participant responses, we identified potential strategies to mitigate these risks, such as providing adequate recreational space without jeopardizing ecological assets. We suggest managers could benefit from a shared‐learning and adaptive approach to property selection given the commonalities between programs. Understanding how practitioners deal with complex decisions in the implementation of revolving funds helps identify future research to improve the performance of this conservation tool.  相似文献   

11.
The effects of fisheries on marine ecosystems, and their capacity to drive shifts in ecosystem states, have been widely documented. Less well appreciated is that some commercially valuable species respond positively to fishing‐induced ecosystem change and can become important fisheries resources in modified ecosystems. Thus, the ecological effects of one fishery can unintentionally increase the abundance and productivity of other fished species (i.e., cultivate). We reviewed examples of this effect in the peer‐reviewed literature. We found 2 underlying ecosystem drivers of the effect: trophic release of prey species when predators are overfished and habitat change. Key ecological, social, and economic conditions required for one fishery to unintentionally cultivate another include strong top–down control of prey by predators, the value of the new fishery, and the capacity of fishers to adapt to a new fishery. These unintended cultivation effects imply strong trade‐offs between short‐term fishery success and conservation efforts to restore ecosystems toward baseline conditions because goals for fisheries and conservation may be incompatible. Conflicts are likely to be exacerbated if fisheries baselines shift relative to conservation baselines and there is investment in the new fishery. However, in the long‐term, restoration toward ecosystem baselines may often benefit both fishery and conservation goals. Unintended cultivation can be identified and predicted using a combination of time‐series data, dietary studies, models of food webs, and socioeconomic data. Identifying unintended cultivation is necessary for management to set compatible goals for fisheries and conservation. Cultivo Accidental, Líneas de Base Cambiantes y el Conflicto entre los Objetivos para las Pesquerías y la Conservación  相似文献   

12.
Abstract: Social, economic, and ecological criteria contribute to the successful design, implementation, and management of marine protected areas (MPAs). In the context of California's Marine Life Protection Act Initiative, we developed a set of methods for collecting, compiling, and analyzing data about the spatial extent and relative economic importance of commercial and recreational fishing. We interviewed 174 commercial fishers who represented the major fisheries in the initiative's north‐central coast region, which extends from Point Arena south to Pigeon Point. These fishers provided data that we used to map the extent of each of the fishing grounds, to weight the relative importance of areas within the grounds, to characterize the operating costs of each fishery, and to analyze the potential economic losses associated with proposed marine protected areas. A regional stakeholder group used the maps and impact analyses in conjunction with other data sets to iteratively identify economic and ecological trade‐offs in designations of different areas as MPAs at regional, port, and fishery extents. Their final proposed MPA network designated 20% of state waters as MPAs. Potential net economic loss ranged from 1.7% to 14.2% in the first round of network design and totaled 6.3% in the final round of design. This process is a case study in the application of spatial analysis to validate and integrate local stakeholder knowledge in marine planning.  相似文献   

13.
Globally, extensive marine areas important for biodiversity conservation and ecosystem functioning are undergoing exploration and extraction of oil and natural gas resources. Such operations are expanding to previously inaccessible deep waters and other frontier regions, while conservation‐related legislation and planning is often lacking. Conservation challenges arising from offshore hydrocarbon development are wide‐ranging. These challenges include threats to ecosystems and marine species from oil spills, negative impacts on native biodiversity from invasive species colonizing drilling infrastructure, and increased political conflicts that can delay conservation actions. With mounting offshore operations, conservationists need to urgently consider some possible opportunities that could be leveraged for conservation. Leveraging options, as part of multi‐billion dollar marine hydrocarbon operations, include the use of facilities and costly equipment of the deep and ultra‐deep hydrocarbon industry for deep‐sea conservation research and monitoring and establishing new conservation research, practice, and monitoring funds and environmental offsetting schemes. The conservation community, including conservation scientists, should become more involved in the earliest planning and exploration phases and remain involved throughout the operations so as to influence decision making and promote continuous monitoring of biodiversity and ecosystems. A prompt response by conservation professionals to offshore oil and gas developments can mitigate impacts of future decisions and actions of the industry and governments. New environmental decision support tools can be used to explicitly incorporate the impacts of hydrocarbon operations on biodiversity into marine spatial and conservation plans and thus allow for optimum trade‐offs among multiple objectives, costs, and risks.  相似文献   

14.
Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land‐use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land‐use change projections with the latest developments in network‐connectivity research and spatial, multipurpose conservation prioritization. We used land‐use change simulations to explore robustness of species’ habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land‐use change. The application of connectivity criteria alongside habitat‐quality criteria for protected‐area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade‐offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low.  相似文献   

15.
Illegal fishing poses a major threat to conservation of marine resources worldwide. However, there is still limited empirical research that quantifies illegal catch levels. We used the randomized response technique to estimate the proportion of divers and the quantities of loco (Concholepas concholepas) they extracted illegally. Loco have been managed for the past 17 years through a territorial user rights for fisheries system (TURFs) in Chile. Illegal fishing of loco was widespread within the TURFs system. Official reported landings (i.e., legal landings) accounted for 14–30% of the total loco extraction. Our estimates suggest that ignoring the magnitude of illegal fishing and considering only official landing statistics may lead to false conclusions about the status and trends of a TURFs managed fishery. We found evidence of fisher associations authorizing their members to poach inside TURFs, highlighting the need to design TURFs systems so that government agencies and fishers’ incentives and objectives align through continuous adaptation. Government support for enforcement is a key element for the TURFs system to secure the rights that are in place.  相似文献   

16.
Trade‐offs in ecosystem services (ES) have received increasing attention because provisioning services often come at the expense of biodiversity loss. When land‐use patterns are not maximally efficient relative to productivity, provisioning services, such as crop production, can often be increased without losing biodiversity. The Atlantic Forest (AF) encompasses dense, mixed, and seasonal forests and has high levels of endemism and anthropogenic threat. We examined trade‐offs between biodiversity and crop production in the AF to provide insights into land‐use management decisions. We developed a biodiversity metric that combines information on tree species richness, evolutionary distinctiveness, and rarity at the local level. We examined the extent to which the nature of ES trade‐offs differ among the 3 forest types. We assessed how annual deforestation rates and land management practices affect biodiversity and agricultural revenues. Finally, we tested whether it is possible to achieve the same total regional revenue without reducing biodiversity by improving local management practices. The 3 forest types had similar patterns in ES trade‐offs, although within mixed forest patterns differed. Biodiversity appeared to be more sensitive to land‐use change than crop revenues. Certain crops yielded up to 10 times higher values in some sites. Enhanced crop productivity may increase revenues without reducing biodiversity. Our results showed that to enhance human well‐being without further conversion of AF, maximizing crop productivity is needed . Increasing efficiency of management outcomes by maintaining higher biodiversity and increasing provisioning services depends on knowledge of forest type, the comparative advantage of planting crops in the best places, and preserving species in a balanced manner across forests.  相似文献   

17.
Conservation biologists recognize that a system of isolated protected areas will be necessary but insufficient to meet biodiversity objectives. Current approaches to connecting core conservation areas through corridors consider optimal corridor placement based on a single optimization goal: commonly, maximizing the movement for a target species across a network of protected areas. We show that designing corridors for single species based on purely ecological criteria leads to extremely expensive linkages that are suboptimal for multispecies connectivity objectives. Similarly, acquiring the least‐expensive linkages leads to ecologically poor solutions. We developed algorithms for optimizing corridors for multispecies use given a specific budget. We applied our approach in western Montana to demonstrate how the solutions may be used to evaluate trade‐offs in connectivity for 2 species with different habitat requirements, different core areas, and different conservation values under different budgets. We evaluated corridors that were optimal for each species individually and for both species jointly. Incorporating a budget constraint and jointly optimizing for both species resulted in corridors that were close to the individual species movement‐potential optima but with substantial cost savings. Our approach produced corridors that were within 14% and 11% of the best possible corridor connectivity for grizzly bears (Ursus arctos) and wolverines (Gulo gulo), respectively, and saved 75% of the cost. Similarly, joint optimization under a combined budget resulted in improved connectivity for both species relative to splitting the budget in 2 to optimize for each species individually. Our results demonstrate economies of scale and complementarities conservation planners can achieve by optimizing corridor designs for financial costs and for multiple species connectivity jointly. We believe that our approach will facilitate corridor conservation by reducing acquisition costs and by allowing derived corridors to more closely reflect conservation priorities.  相似文献   

18.
After their failure to achieve a significant reduction in the global rate of biodiversity loss by 2010, world governments adopted 20 new ambitious Aichi biodiversity targets to be met by 2020. Efforts to achieve one particular target can contribute to achieving others, but different targets may sometimes require conflicting solutions. Consequently, lack of strategic thinking might result, once again, in a failure to achieve global commitments to biodiversity conservation. We illustrate this dilemma by focusing on Aichi Target 11. This target requires an expansion of terrestrial protected area coverage, which could also contribute to reducing the loss of natural habitats (Target 5), reducing human‐induced species decline and extinction (Target 12), and maintaining global carbon stocks (Target 15). We considered the potential impact of expanding protected areas to mitigate global deforestation and the consequences for the distribution of suitable habitat for >10,000 species of forest vertebrates (amphibians, birds, and mammals). We first identified places where deforestation might have the highest impact on remaining forests and then identified places where deforestation might have the highest impact on forest vertebrates (considering aggregate suitable habitat for species). Expanding protected areas toward locations with the highest deforestation rates (Target 5) or the highest potential loss of aggregate species’ suitable habitat (Target 12) resulted in partially different protected area network configurations (overlapping with each other by about 73%). Moreover, the latter approach contributed to safeguarding about 30% more global carbon stocks than the former. Further investigation of synergies and trade‐offs between targets would shed light on these and other complex interactions, such as the interaction between reducing overexploitation of natural resources (Targets 6, 7), controlling invasive alien species (Target 9), and preventing extinctions of native species (Target 12). Synergies between targets must be identified and secured soon and trade‐offs must be minimized before the options for co‐benefits are reduced by human pressures.  相似文献   

19.
As economic and social contexts become more embedded within biodiversity conservation, it becomes obvious that resources are a limiting factor in conservation. This recognition is leading conservation scientists and practitioners to increasingly frame conservation decisions as trade‐offs between conflicting societal objectives. However, this framing is all too often done in an intuitive way, rather than by addressing trade‐offs explicitly. In contrast, the concept of trade‐off is a keystone in evolutionary biology, where it has been investigated extensively. I argue that insights from evolutionary theory can provide methodological and theoretical support to evaluating and quantifying trade‐offs in biodiversity conservation. I reviewed the diverse ways in which trade‐offs have emerged within the context of conservation and how advances from evolutionary theory can help avoid the main pitfalls of an implicit approach. When studying both evolutionary trade‐offs (e.g., reproduction vs. survival) and conservation trade‐offs (e.g., biodiversity conservation vs. agriculture), it is crucial to correctly identify the limiting resource, hold constant the amount of this resource when comparing different scenarios, and choose appropriate metrics to quantify the extent to which the objectives have been achieved. Insights from studies in evolutionary theory also reveal how an inadequate selection of conservation solutions may result from considering suboptimal rather than optional solutions when examining whether a trade‐off exits between 2 objectives. Furthermore, the shape of a trade‐off curve (i.e., whether the relationship between 2 objectives follows a concave, convex, or linear form) is known to affect crucially the definition of optimal solutions in evolutionary biology and very likely affects decisions in biodiversity conservation planning too. This interface between evolutionary biology and biodiversity conservation can therefore provide methodological guidance to support decision makers in the difficult task of choosing among conservation solutions. Percepciones de la Teoría de Historia de Vida para una Tratamiento Explícito de las Compensaciones en la Biología de la Conservación  相似文献   

20.
Mitigation and offset programs designed to compensate for ecosystem function losses due to development must balance losses from affected ecosystems with gains in restored ecosystems. Aggregation rules applied to ecosystem functions to assess site equivalence are based on implicit assumptions about the substitutability of functions among sites and can profoundly influence the distribution of restored ecosystem functions on the landscape. We investigated the consequences of rules applied to the aggregation of ecosystem functions for wetland offsets in the Beaverhill watershed in Alberta, Canada. We considered the fate of 3 ecosystem functions: hydrology, water purification, and biodiversity. We set up an affect‐and‐offset algorithm to simulate the effect of aggregation rules on ecosystem function for wetland offsets. Cobenefits and trade‐offs among functions and the constraints posed by the quantity and quality of restorable sites resulted in a redistribution of functions between affected and offset wetlands. Hydrology and water purification functions were positively correlated with one another and negatively correlated with biodiversity function. Weighted‐average rules did not replace functions in proportion to their weights. Rules prioritizing biodiversity function led to more monofunctional wetlands and landscapes. The minimum rule, for which the wetland score was equal to the worst performing function, promoted multifunctional wetlands and landscapes. The maximum rule, for which the wetland score was equal to the best performing function, promoted monofunctional wetlands and multifunctional landscapes. Because of implicit trade‐offs among ecosystem functions, no‐net‐loss objectives for multiple functions should be constructed within a landscape context. Based on our results, we suggest criteria for the design of aggregation rules for no net loss of ecosystem functions within a landscape context include the concepts of substitutability, cobenefits and trade‐offs, landscape constraints, heterogeneity, and the precautionary principle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号