首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Observations have been made on seasonal fluctuations in dissolved inorganic nutrients, internal reserves of nitrogen and growth rates in Laminaria longicruris. The onset of winter growth in shallow-water stations (6 and 9 m) correlated well with improved dissolved nitrate conditions in the sea. During the winter, reserves of NO 3 - were accumulated by the plants and reached maximum values of 150 moles per g fresh weight in March. This represents a concentration factor of approximately 28,000 over the ambient levels, or an internal nitrogen reserve of 2.1% of the dry weight of the tissue. Depletion of this nitrogen pool followed the disappearance of the external NO 3 - with a lag period of up to 2 months. Rapid kelp growth was measured during this period. Reserves of organic nitrogen also reached maximum values in March and declined slowly throughout the summer into autumn. It is suggested that the combined inorganic and organic nitrogen reserves sustain the rapid growth rates into July and at reduced rate through the late summer. Fertilization of an experimental perimental kelp bed with NaNO3 increased the internal plant reserves of NO 3 - and produced a much improved summer growth rate. The enriched plants developed very small reserves of carbohydrate during the rapid summer growth phase.NRCC No. 15549.  相似文献   

2.
Nitrogen transport in a Laminaria digitata (Huds.) Lamour population growing at Arbroath, Scotland has been investigated (during the period 3 June 1981 to 3 July 1981), using 15N as tracer. NO 3 - was assimilated both by the blade meristem and by the mature blade. NO 3 - uptake by the blade meristem alone was insufficient to supply the nitrogen demand for growth. This additional demand was met by nitrogen transport from the mature blade to the meristem. It was estimated that 70% of the nitrogen demand of the meristematic region was supplied by nitrogen transport from the mature blade. Although transport occurred, the size of the endogenous pool of stored nitrogen in the mature blade did not change, the quantity of nitrogen transported being equivalent to the amount of NO 3 - assimilated during the experimental period. The possible co-transport of nitrogen and carbon is discussed.  相似文献   

3.
Porphyra perforata J. Ag. was collected from a rocky land-fill site near Kitsilano Beach, Vancouver, British Columbia, Canada and was grown for 4 d in media with one of the following forms of inorganic nitrogen: NO 3 - , NH 4 + and NO 3 - plus NH 4 + and for 10 d in nitrogen-free media. Internal nitrogen accumulation (nitrate, ammonium, amino acids and soluble protein), nitrate and ammonium uptake rates, and nitrate reductase activity were measured daily. Short initial periods (10 to 20 min) of rapid ammonium uptake were common in nitrogen-deficient plants. In the case of nitrate uptake, initial uptake rates were low, increasing after 10 to 20 min. Ammonium inhibited nitrate uptake for only the first 10 to 20 min and then nitrate uptake rates were independent of ammonium concentration. Nitrogen starvation for 8 d overcame this initial suppression of nitrate uptake by ammonium. Nitrogen starvation also resulted in a decrease in soluble internal nitrate content and a transient increase in nitrate reductase activity. Little or no decrease was observed in internal ammonium, total amino acids and soluble protein. The cultures grown on nitrate only, maintained high ammonium uptake rates also. The rate of nitrate reduction may have limited the supply of nitrogen available for further assimilation. Internal nitrate concentrations were inversely correlated with nitrate uptake rates. Except for ammonium-grown cultures, internal total amino acids and soluble protein showed no correlation with uptake rates. Both internal pool concentrations and enzyme activities are required to interpret changes in uptake rate during growth.  相似文献   

4.
A continuously recording, flow-through oxygen electrode system for the measurement of oxygen exchange is described and applied to an investigation of photosynthetic rates in the marine algae Fucus vesiculosus L. and Laminaria digitata (Huds.) Lam. The photosynthetic rate (mg O2.g dry weight-1.h-1) at 15°C and 21.5 mW.cm-2 (usually just saturating) ranges in F. vesiculosus from 1.20 in basal portions of the thallus to 9.27 at the apices and in L. digitata from 1.19 mg O2 at the thallus base to 3.97 mg O2 at distances of several centimetres behind the upper thallus margin. This variation is reduced when the photosynthetic rate is expressed in terms of fresh weight or surface area.This research was carried out while one of us (R.J.K.) was an Alexander von Humboldt fellow at the University of Kiel, and is part of the programme Sonderforschungsbereich 95, Wechselwirkung Meer-Meeresboden, Universität Kiel.  相似文献   

5.
Hybridization experiments between seven north and south Atlantic Laminaria species were carried out. Morphologically normal F1 sporophytes developed from the following crosses among south Atlantic species: L. pallida x L. schinzii, L. pallida x L. abyssalis and L. schinzii x L. abyssalis. Normal F1 sporophytes also resulted from the crosses L. digitata (north Atlantic) x L. pallida (south Atlantic) and L. digitata (north Atlantic) x L. abyssalis (south Atlantic). Hybrids between north Atlantic L. ochroleuca and south Atlantic L. pallida, L. schinzii and L. abyssalis and between north Atlantic L. digitata and south Atlantic L. schinzii initially developed as normal sporophytes but became deformed later on and further development was retarded. No hybrids resulted from attempted crosses between northeastern Atlantic L. saccharina and L. abyssalis from Brazil. Temperature tolerance, relative growth rates and temperature demands for gametogenesis revealed the existence of a warm temperate group within the digitate Laminaria species consisting of L. ochroleuca, L. pallida, L. schinzii and L. abyssalis. Hybridization experiments and temperature responses suggest that north Atlantic L. digitata and L. ochroleuca are still similar to south Atlantic Laminaria species, confirming the speculation that a transequatorial migration of a warm-temperate L. ochroleuca-like ancestor may have taken place.  相似文献   

6.
Nitrification rates, measured in different sediment types from Danish waters, are in the range of 0.3 to 1.4 mmol NO 3 - m-2 d-1. There is no signification between sandy and muddy sediments, nor between shallow and deeper stations. The extent of nitrification is probably limited to the zone of oxygen penetration, 1.5 to 5.5 mm. There are, however, nitrifying bacteria located in the anoxic sediment layers. There relative numbers were found by measuring the nitrification potential of the sediment. These potential rates (22°C) can also be used to calculate actual rates of nitrification, by adjusting to in situ temperature and oxygen penetration. These calculated rates agree with the actual measured rates of nitrification for a wide range of sediment types and may be used for the estimation of actual nitrification rates. Nitrate flux out from the sediment/water interface is in the range of 0 to 0.7 mmol NO 3 - m-2 d-1. There is no correlation between concentration gradients of nitrate across the sediment/water interface and the measured flux of nitrate. Approximately 50% of nitrate production is released to the water column. The remainder (0 to 0.35 mmol N m-2 d-1) may have been denitrified.  相似文献   

7.
Eelgrass (Zostera marina L.) has access to nutrient pools in both the water column and sediments. We investigated the potential for eelgrass to utilize nitrate nitrogen by measuring nitrate reductase (NR) activity with an in vivo tissue assay. Optimal incubation media contained 60 mM nitrate, 100 mM phosphate, and 0.5% 1-propanol at pH 7.0. Leaves had significantly higher NR activity than roots (350 vs 50 nmoles NO 2 produced g FW–1 h–1). The effects of growing depth (0.8 m MLW, 1.2 m, 3.0 m, 5.0 m) and location within the eelgrass meadow (patch edge vs middle) on NR activity were examined using plants collected from three locations in the Woods Hole area, Massachusetts, USA, in July 1987. Neither depth nor position within the meadow appear to affect NR activity. Nitrate enrichment experiments (200 M NO 3 for 6 d) were conducted in the laboratory to determine if NR activity could be induced. Certain plants from shallow depth (1.2 m) showed a significant response to enrichment, with NR activity increasing from >100 up to 950 nmoles NO 2 g FW–1 h–1 over 6 d. It appears that Z. marina growing in very shallow water (0.8 m) near a shoreline may be affected by ground water or surface run-off enrichments, since plants from this area exhibited rates up to 1 600 nmol NO 2 g FW–1 h–1. Water samples from this location consistently had slightly higher NO 3 concentrations (1.4 M) than all other collection sites (0.7 M). Thus, it is possible that chronic run-off or localized groundwater inputs can create sufficient NO 3 enrichment in the water column to induce nitrate reductase activity in Zostera leaves.  相似文献   

8.
Seasonal variations in tissue nitrogen (ethanol soluble nitrate and ninhydrin positive substances, as well as total nitrogen) of different thallus parts of Pleurophycus gardneri Setchell and Saunders were monitored simultaneously with ambient seawater nitrate from 1982 until 1984 in Bamfield, Vancouver Island, British Columbia, Canada. A trend of low, nearly zero levels in ambient nitrate typical for the area in late spring and early summer normally contrasts with average nitrate concentrations of 10 mol NO3 - l-1 in late fall and winter. Total nitrogen content was greater in the perennial thallus parts, stipe and holdfast than in the annual blade and peaked in fall and early winter. The longitudinal thallus distribution of nitrate revealed a distinct and significant concentration of nitrate in the haptera reaching at maximum 8% nitrate-N of the internal total nitrogen. Internal nitrate concentration ranged from 20 to 5 000 times the ambient nitrate concentration in the midrib, and from 40 to 3 100 times in the wing, while the range was greatest with 400 to 14 000 times in the haptera. P. gardneri contained at most about 7 mol NO3 - g fresh wt-1 in the blade, which corresponds to about 6% of total tissue nitrogen. Ninhydrin positive substances comprised the major portion of the soluble N pool in P. gardneri and showed a pronounced seasonality. Concentrations of ninhydrin positive substances ranged from 20 to 800 g N g fresh wt-1 in the midrib and in the wing. In the stipe, ninhydrin positive substances varied from 180 to 2 200 g N g fresh wt-1, and from 250 to 1 200 g N g fresh wt-1 in the haptera. Evidence is given that (1) the perennial parts, stipe and haptera of P. gardneri contain the majority of nitrogen products independent of season and ontogenetic stage; (2) ninhydrin positive substances are the most abundant internal nitrogen constituents; (3) the low N values in the blade in summer suggest a nitrogen limited growth; and (4) nitrate may not be the predominant external nitrogen source.  相似文献   

9.
Dinitrogen fixation associated with bacteria in the gastrointestinal tract of sea urchins appears to be a widespread phenomenon: sea urchins from the tropics (Diadema antillarum, Echinometra lacunter, Tripneustes ventricosus), the temperature zone (Strongylocentrotus droebachiensis) and the arctic (S. droebachiensis) exhibited nitrogenase activity (C2H2 reduction). Pronounced seasonal variation was found in nitrogenase activity of temperate sea urchins feeding on kelp (Laminaria spp.) and eelgrass (Zostera marina). The mean monthly nitrogenase activity was inversely correlated with the nitrogen content of the sea urchin's food, which varied up to fivefold over the course of a year. The highest rate of nitrogenase activity recorded for a temperate sea urchin during the 14 month sampling period was 11.6g N fixed g wet wt-1 d-1, with a yearly mean activity of 1.36 g N fixed g wet wt-1 d-1. Studies with 15N confirmed the C2H2 reduction results and showed incorporation of microbially-fixed nitrogen into S. droebachiensis demonstrating that N2 fixation can be a source of N for the sea urchin. Laboratory experiments indicated that part of the sea urchin's (S. droebachiensis) normal gastrointestinal microflora is responsible for the observed nitrogenase activity.  相似文献   

10.
Growth characteristics and nutrient uptake kinetics were determined for zooxanthellae (Gymnodinium microadriaticum) in laboratory culture. The maximum specific growth rate (max) was 0.35 d-1 at 27 °C, 12 hL:12 hD cycle, 45 E m-2 s-1. Anmmonium and nitrate uptake by G. microadriaticum in distinct growth phases exhibited Michaelis-Menten kinetics. Ammonium half-saturation constants (Ks) ranged from 0.4 to 2.0 M; those for nitrate ranged from 0.5 to 0.8 M. Ammonium maximum specific uptake rates (Vmax) (0.75 to 1.74 d-1) exceeded those for nitrate (0.14 to 0.39 d-1) and were much greater than the maximum specific growth rate (0.35 d-1), suggesting that ammonium is the more significant N source for cultured zooxanthellae. Ammonium and nitrate Vmax values compare with those reported from freshly isolated zooxanthellae. Light enhanced ammonium and nitrate uptake; ammonium inhibited nitrate uptake which was not reported for freshly isolated zooxanthellae, suggesting that physiological differences exist between the two. Knowledge of growth and nutrient uptake kinetics for cultured zooxanthellae can provide insight into the mechanisms whereby nutrients are taken up in coral-zooxanthelae symbioses.Contribution No. 1515 from the University of Maryland Center for Environmental and Estuarine Studies, Chesapeake Biological Laboratory, Solomons, Maryland 20688-0038, USA  相似文献   

11.
Productivity was studied in two diatom species, Chaetoceros armatum T. West and Asterionella socialis Lewin and Norris, which form persistent dense blooms in the surf zone along the Pacific coast of Washington and Oregon, USA. Past observations have shown that surf-diatom standing stock usually declines in summer along with concentrations of nitrate and ammonium. Using the 14C method, photosynthetic rates in natural surf samples were measured monthly for one year (October 1981 through September 1982) at a study site on the Washington coast. Also measured were temperature, salinity, dissolved nutrients, particulate carbon and nitrogen (used as estimates of phytoplankton C and N), and chlorophyll a. Assimilation numbers (P max) were higher in summer (5 to 8 g C g-1 chl a h-1) than in winter (3 to 4gC). Specific carbon incorporation rates (µmax) showed no obvious seasonality, mostly falling within the range of 0.09 to 0.13 g C g-1 C(POC) h-1. The discrepancy between the seasonal trends for chlorophyll-specific and carbon-specific rates reflects a change in the carbon-to-chlorophyll ratio. Because of seasonal differences in daylength and light intensity, daily specific growth rates () are thought to be higher in summer than in winter. Neither ammonium enrichment assays nor particulate carbon-to-nitrogen ratios provided convincing evidence for nitrogen limitation during summer, and the observed changes in diatom abundance cannot be explained on this basis. Both the high diatom concentrations and their seasonal variations probably are due mainly to factors other than growth rates; two factors considered important are diatom flotation and seasonal changes in wind-driven water transport. C. armatum usually dominates the phytoplankton biomass in the surf zone, and evidence suggests that this species is strongly dominant in terms of primary production.Contribution No. 1391 of the School of Oceanography, University of Washington, Seattle, Washington, USA  相似文献   

12.
The effects of temperature on growth rate of rapidly-growing cultured macrosporophytes of 9 isolates of Atlantic Laminaria comprising 4 species have been investigated. No significant population variation was observed within species despite wide variations in temperature between the original collecting sites. L. saccharina showed a broad temperature optimum in the 10°–15°C range, whereas L. longicruris had a sharp optimum at 10°C. L. digitata and L. hyperborea grew more slowly, with only slightly sub-optimal growth over a wide temperature range, but with peaks at 10°C (L. digitata) and 15°C (L. hyperborea). The maximum survival temperatures of individual male and female vegetatively-growing gametophytes were ascertained for these species plus the Arctic L. solidungula, and were as follows: L. saccharina and L. longicruris, 23°C; L. digitata (male), 23°C; L. digitata (female), 22°C; L. hyperborea, 21°C; L. solidungula, 18°C. The lack of within-species differences demonstrates that the success of the genus in areas with different temperature regimes is brought about by phenotypic plasticity of individuals rather than the selection of temperature races or ecotypes.  相似文献   

13.
Seasonal patterns of growth, reproduction, and productivity of Codium fragile spp. tomentosoides (van Goor) Silva were monitored at 3 locations in Rhode Island. Maximal growth occurred during the summer and was more significantly correlated with temperature than any other factor measured in this study. Multiple correlation models suggested an interaction between temperature, irradiance, and available nitrogen. Maximal reproduction occurred in late summer and early fall. The maximal productivity, based on harvested quadrats, was 2. 10 g dry weight m-2 day-1. A large amount (up to 87.3%) of the annual production entered the detrital food chain during the winter by fragmentation of the thallus. Culture studies examined the effects of temperature (6° to 30°C), irradiance (7 to 140 E m-2 sec-1), daylength (8 h light: 16 h dark to 24 h light: O h dark) and salinity (6 to 48) on growth. Differentiated thalli grew over a broad range of experimental conditions, with maximal growth at 24°C, 24 to 30 S, a minimal irradiance of 28 E m-2 sec-1, and 16 h daylength. The effect of increasing daylength was due to increased total daily irradiance rather than to a true photoperiodic effect. Undifferentiated sporelings survived and grew in a narrower range of environmental conditions than thalli. c. fragile spp. tomentosoides grew equally well with nitrate, nitrite, ammonium, and urea as a nitrogen source. The addition of NaHCO3 stimulated growth at levels of 2.4 to 4.8 mM, suggesting an inorganic carbon limitation in static cultures. This study supports the hypothesis that the in situ seasonal growth pattern of c. fragile spp. tomentosoides is primarily due to the interaction of temperature and irradiance.  相似文献   

14.
K. Lüning 《Marine Biology》1969,3(3):282-286
Standing crop values of Laminaria species sampled between 0 to 2 m depth in the sublittoral of Helgoland, a small rocky island in the southern North Sea, are similar to those reported by other workers from Norwegian or Scottish coasts. Below 2 m water depth, however, standing crop values are found to be reduced to a far greater extent with increasing depth than in the Norwegian or Scottish areas studied. Maximum standing crop values are not found in Laminaria digitata and L. saccharina growing just below the low water mark of spring tides, but in the upper L. hyperborea forest at 2 m depth. Population density and leaf area index (LAI) decrease with increasing depth (but not the average weight of individuals constituting the L. hyperborea forest). It is suggested that the depth at which LAI becomes 1 represents an important ecological threshold, since growth rates of L. hyperborea specimens appear to decrease at greater depths but not to increase above the threshold. Self-shading might equalize, to a certain extent, the quantity of underwater irradiance available to an individual phylloid at all depths at which a close vegetation of Laminaria species occurs.  相似文献   

15.
The relative importance of 3 different sources for biological production of nitrite in seawater was studied. Decomposition of fecal pellets of the copepod Calanus helgolandicus (at a concentration of approximately 12 g-at N/l), in seawater medium, released small amounts of ammonia over a 6 week period. It nitrifying bacteria were added to the fecal pellets nitrite was barely detectable over the same period. Decomposition of phytoplankton (present at a concentration of about 8 g-at particulate plant N/l) with added heterotrophic bacteria, released moderate amounts of ammonia over a 12 week period. If the ammonia-oxidizing bacterium Nitrosocystis oceanus was added to the decomposing algae, nitrite was produced at a rate of 0.2 g-at N/l/week. Heterotrophic nitrification was not observed when 7 open-ocean bacteria were tested for their ability to oxidize ammonia. The diatom Skeletonema costatum, either non-starved or starved of nitrogen, produced nitrite when growing with 150 or 50 g-at NO 2 - -N/l at a light intensity of about 0.01 ly/min. When nitrate in the medium was exhausted, S. costatum assimilated nitrite. If starved of vitamin B12, both non-N-starved and N-starved cells of S. costatum produced nitrite in the medium with 150 g-at NO 3 - -N/l. Nitrate was not exhausted and cell densities reached 2x105/ml due to vitamin B12 deficiency. If light intensity was reduced to 0.003 ly/min under otherwise similar conditions, cells did not grow due to insufficient light, and nitrite was not produced. In the sea, it appears that, in certain micro-environments, decomposition of particulate matter releases ammonia with its subsequent oxidation to nitrite. The amounts of these nutrients and the rate at which they are produced are dependent upon the nature of the materials undergoing decomposition and the associated bacteria. In certain other areas of the sea, where phytoplankton standing stock is high and nitrate is non-limiting, excretion by these organisms is a major source of nitrite.  相似文献   

16.
We grew marineSynechococcus Clones WH7803 and WH8018 at 150µE m–2 s–1 in dilute batch cultures with NH 4 + as the limiting nutrient. The maximal uptake capacities for NH 4 + and NO 3 - were measured in frequent experiments during log and stationary phases of growth. Clone WH7803, originally isolated from oceanic waters, had a specific uptake rate of NH 4 + that approximated the maximum (log phase) specific growth rate (ca ~ 0.025 h–1). NO 3 - uptake was observed only after nitrogen in the media was depleted; the NO 3 uptake capacity was ca 12% the capacity for NH 4 + uptake throughout the nitrogen depleted period. Growth was arrested upon nitrogen depletion, but resumed soon after reinoculation into fresh media, even after 5 d of starvation. Clone WH8018, originally isolated from coastal waters, revealed a five-fold enhancement in the NH 4 + uptake rate relative to growth rate at the time of nitrogen depletion. As nitrogen starvation proceeded, this enhancement was reduced. This clone, too, was able to take up NO 3 - once nitrogen in the media was depleted, but only after ca 20 h. Growth continued for a limited period during nitrogen depletion, but nitrogen-starved cells were slow to recover upon reinoculation into fresh media. We speculate that clonal differences may reflect differences in the molecular regulation of nitrogen assimilation.  相似文献   

17.
Current estimates indicate that atmospheric nitrogen deposition is responsible for 26 to over 70% of new nitrogen (N) input to North Carolina estuaries and coastal waters. Concentrations of N in coastal rainfall events in a 2-yr period (August 1990 to 1992) ranged from 0.7 to 144 M for NO 3 - and 0.5 to 164 M for NH 4 + . The 15N values of the NO 3 - and the NH 4 + were determined in 15 rain events. NH4 + values averaged-3.13 (range:-12.5 to+3.6), while NO 3 - plus dissolved organic N fractions had an average 15N of+1.0 (range:-2.0 to+4.7). The uptake of this isotopically light N into particulate N, in parallel with primary productivity and biomass (as chlorophyll a) determinetions, was examined in microcosm and mesocosm bioassays. As phytoplankton productivity and biomass increased with added rainwater N, the 15N of particulate N decreased. To investigate the effects of significant atmospheric N loading with stable isotope tracers, we measured the 15N of the>1 m fraction from surrounding coastal waters. Owing to the episodic nature of atmospheric deposition and the great variation in N loading with each event, a simple assessment of the atmospheric contribution was not possible. During a period in which rainfall inputs were significant and frequent (August 1992), 15N values were several more negative than during periods of drought (Fall 1990). These experiments and observations emphasize the contribution of atmospheric nitrogen deposition to new production in coastal waters.  相似文献   

18.
The bioavailability of iron in seawater filtered through a 0.025-m filter was investigated using 59Fe-labeled iron uptake by the macroalga Laminaria japonica (Areschoug: Phaeophyta) (collected in the northern Japan Sea 1993) as an assay. About 80% of the iron in the 0.025-m filtered coastal seawater was soluble and/or small colloidal organically bound iron, associated with natural organic ligands forming complexes with ferric ion. After decomposition of the organic matter by ultraviolet (UV) irradiation, 55% of the iron addition [or 0.6 nM, nearly the concentration of Fe(OH) 2 + in equilibrium with amorphous hydrous ferric oxide in seawater at pH 8.0] in the 0.025-m filtered coastal seawater was taken up by the macroalga. Since the iron concentrations in the 0.025-m filtered coastal seawater are 0.1 to 2.0 nM and only 0.6 nM of the iron is likely available to biota over 1 to 2 d, we suggest that only small amounts of bioavailable iron exist in coastal seawater not affected by inflow from land and that a significant fraction of dissolved (<0.025 ) iron occurs in forms, such as organic iron complexes, other than the simple hydroxo-complex species predicted by thermodynamic models.  相似文献   

19.
Interactions of the nitrate, phosphate, and ammonium uptake systems and the interactions of these systems with photosynthesis were investigated for Thalassiosira weissflogii and Phaeodactylum tricornutum preconditioned in continuous culture. The cultures were supplied with NO - 3 and PO = 4 in an N:P atomic ratio of 15:1, and residual concentrations of both nutrients in the growth chamber were very low. The rate of NO - 3 uptake was reduced by the addition of NH + 4 or PO = 4 . The rate of PO = 4 uptake by T. weissflogii was reduced by the addition of NH + 4 . The rate of carbon fixation was reduced by NO - 3 additions and slightly reduced by the addition of PO = 4 . There were two components of NO - 3 uptake, one light-dependent and one light-independent. Uptake inhibition by added PO = 4 acted on the light-independent component. The change in the C fixation rate due to added NO - 3 was equal to the rate of NO - 3 uptake by the light-dependent component on a molar basis. Nitrate assimilation (reduction) rates were calculated from the time course of extracellular and intracellular NO - 3 concentrations. The light-dark change in the assimilation rate was similar to the light-dark change in the uptake rate, suggesting close coupling between the light-dependent components of uptake and assimilation. The assimilation rate dropped upon exhaustion of extracellular NO - 3 , implying that an uptake-coupled component of assimilation is unavailable for the assimilation of intracellular NO - 3 . The reduction in the C fixation rate due to NO - 3 was temporally associated with uptake rather than assimilation, but may reflect interaction with either the light-dependent uptake step or the closely coupled assimilation. Phosphate additions reduced the rate of NO - 3 uptake, while the rate of assimilation was unaffected.  相似文献   

20.
Inorganic nitrogen metabolism inUlva rigida illuminated with blue light   总被引:2,自引:0,他引:2  
A. Corzo  F. X. Niell 《Marine Biology》1992,112(2):223-228
Inorganic nitrogen metabolism in blue light was studied for the green algaUlva rigida C. Agardh collected in the south of Spain (Punta Carnero, Algeciras) in the winter of 1987. NH4 + has been reported to inhibit NO3 - uptake; however,U. rigida showed a net NO3 - uptake even when the NH4 + concentration of the external medium was three or four times greater than the concentration of NO3 -. NO3 - uptake rates were similar in both darkness and in blue light of various photon fluence rates (PFR) ranging from 17 to 160 mol m-2 s-1. Since NO3 - uptake is an active mechanism involving the consumption of ATP, respiratory metabolism can provide enough ATP to maintain the energetic requirement of NO3 - transport even in darkness. In contrast, NO3 - reduction inU. rigida was highly dependent on the net photosynthetic rate. After 7 h in blue light, intracellular NO3 - concentrations ([NO3 -] i ) were higher in specimens exposed to intensities below the light compensation point (LCP) than in those incubated at a PFR above the LCP. When PFR is below the light compensation point, NO3 - reduction is low, probably because all the NADH produced by the cells is oxidized in the respiratory chain in order to produce ATP to maintain a steady NO3 - transport rate. The total nitrogen (TN) and carbon (TC) contents decreased from darkness to 33 mol m-2 s-1 in blue light. In this range, catabolic processes prevailed over anabolic ones. In contrast, increases in TN and TC contents were observed above the light compensation point. The C : N ratio increased with light intensity, reaching a stable value of 17 at 78 mol m-2 s-1 in blue light. Intracellular NO3 - concentration and NO3 - reduction appear to be directly controlled by light intensity. This external control of [NO3 -]i and the small capacity ofU. rigida to retain incorporated NO3 -, NO2 - and NH4 + ions may explain its nitrophilic character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号