首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of the predatory naticid snail Polinices duplicatus (Say) on species composition, diversity and density, of the infauna of intertidal sand-flats at Barnstable Harbor, Massachusetts, USA, were studied using field experiments. Responses of molluscs (prey of P. duplicatus) and nonmolluscs (nonprey) were considered separately to distinguish between the effects of feeding and sediment disturbance during foraging. The fauna of 0.25 m2 predator-exclusion cages, coarse-mesh cages, sieved areas, and controls was followed for 1 yr. Species associations within cages from which predators were excluded were denser, more diverse, and richer in molluscs than those in other treatments. Larger areas (3×3 m) of natural bottom were fenced and maintained as snail exclosures and enclosures during two feeding seasons. For both molluscs and nonmolluscs, diversity (H'), number of species, evenness (SD), and density all decreased with increasing snail density. Intense predation pressure on molluscs and selective feeding on thin-shelled bivalves, which were rare, removed individuals and species of molluscs from the community. Comparison of samples taken inside and outside trails made by snails showed that disturbance of the surface sediment layers by snails decreased the abundance of spionid polychaetes and total nonmolluscs. The sipunculan Phascolopsis gouldi and the bivalve Gemma gemma dominated the community in all experimental treatments and were little affected by the activity of Polinices duplicatus. Predation and disturbance by snails lowered community diversity by removing individuals of the less abundant species, and generally maintained population densities below the level where strong competition would occur.  相似文献   

2.
Predatory feeding of two marine mysids   总被引:3,自引:0,他引:3  
Predatory feeding of the marine mysids Mysidopsis bigelowi and Neomysis americana on several species of co-occurring copepods was examined in laboratory experiments. M. bigelowi exhibited a curvilinear functional response; there was a negative logarithmic relationship between prey density and clearance rates. N. americana also exhibited higher clearance rates at lower prey densities. Increased clearance rates at lower prey densities were probably due to increased swimming speed or reaction distance as hunger increased. This response occurred only when mysids could visually locate prey; in complete darkness clearance rates were significantly lower and independent of prey density. Feeding rates on different prey species were only partially dependent on prey size; prey movement patterns and escape behavior also strongly affected feeding rates. M. bigelowi showed active prey selection when offered a choice of different prey species. Estimates of predation rates of estuarine mysid populations indicate that they could have a significant effect on co-occurring copepod populations.  相似文献   

3.
This paper reports on the feeding biology of a predatory and of a facultatively predatory nematode, Enoploides longispiculosus and Adoncholaimus fuscus, respectively. Both species represent genera which are common and abundant in the littoral of the North Sea and in adjacent estuaries. Observations on the foraging behaviour of both species are given, and for the former species, a range of prey from its natural habitat is identified. Respiration was determined using a polarographic oxygen electrode technique and compared to consumption determined as predation rates on the monhysterid nematode Diplolaimelloides meyli. The daily C-loss due to respiration accounted for 15% of the measured C-consumption in E. longispiculosus and for 111% in A. fuscus, proving the observed feeding rates in the latter species to have been inadequate for the maintenance of its aerobic metabolism. Daily respiration rates at an average environmental temperature were 219 ng C ind−1 d−1 for adults of A. fuscus and 21.9 ng C ind−1 d−1 for adults of E. longispiculosus. Using radiotracer techniques, no uptake of bacterial cells or of organic matter in the dissolved phase was demonstrated for E. longispiculosus. In A. fuscus, however, a significant drinking of label in the dissolved or volatile fraction occurred; bacterial cells were taken up at a level insignificant to the nematode's daily C-ration. It is concluded that E. longispiculosus has a fairly strict predatory feeding strategy, while A. fuscus gains a majority of C from additional foraging strategies, among which the uptake of dissolved material and scavenging on macrofauna carcasses (as reported in the literature) may be of particular importance. Received: 28 August 1998 / Accepted: 8 March 1999  相似文献   

4.
Feeding habits of tropical fish larvae were analysed in a comparative study of four species (Scorpaenodes sp., Carangoides sp., Acanthocepola sp. and Cynoglossus sp.) from the Andaman Sea. We investigated morphological characteristics and their potential influence on larval feeding, and looked for common patterns in larval prey preference. Gut contents of a total of 300 larvae were examined and compared with local zooplankton composition. The feeding habits of the investigated larvae shared a number of characteristics. During ontogeny both the preferred prey size and the number of prey in the gut increased, and across all larval size classes the relative prey size spectrum stayed constant, of approximately the same magnitude for all four species. On the other hand, larval feeding also differed in a number of aspects, especially differences in the taxonomic composition of preferred prey were apparent. Scorpaenodes sp. preferred abundant and large prey taxa, Acanthocepola sp. and Carangoides sp. preferred large, but less common prey taxa, while Cynoglossus sp., which had the relatively smallest mouth size, preferred smaller sized prey groups. Hence, the findings indicate that from an offset of common characteristics, especially related to prey size preference, larvae have their individual feeding patterns related to specific morphology and patterns of distribution.Communicated by M. Kühl, Helsingør  相似文献   

5.
Fricke  H.  Hissmann  K. 《Marine Biology》2000,136(2):379-386
One concept of evolutionary ecology holds that a living fossil is the result of past evolutionary events, and is adapted to recent selective forces only if they are similar to the selective forces in the past. We describe the present environment of the living coelacanth Latimeria chalumnae Smith, 1939 at Grande Comore, western Indian Ocean and report depth-dependent cave distribution, temperature, salinity and oxygen values which are compared to the fish's distribution and its physiological demands. We studied the activity pattern, feeding behaviour, prey abundance and hunting success to evaluate possible links between environmental conditions, feeding ecology and evolutionary success of this ancient fish. Transmitter tracking experiments indicate nocturnal activity of the piscivorous predator which hunts between approximately 200 m below the surface to 500 m depth. Fish and prey density were measured between 200 and 400 m, both increase with depth. Feeding tracks and feeding strikes of the coelacanth at various depths were simulated with the help of video and laser techniques. Along a 9447 m video transect a total of 31 potential feeding strikes occurred. Assuming 100% hunting success, medium-sized individuals would obtain 122 g and large females 299 g of prey. Estimates of metabolic rates revealed for females 3.7 ml O2 kg−1 h−1 and for males 4.5 ml O2 kg−1 h−1. Today coelacanths are considered to be a specialist deep-water form and to inhabit, with their ancient morphology, a contemporary environment where they compete with advanced, modern fish. Received: 5 July 1999 / Accepted: 11 November 1999  相似文献   

6.
Increasing dietary specialization is an inherently risky strategy because it increases a species’ vulnerability to resource depletion. However, risks associated with dietary specialization may be offset by increased performance when feeding on preferred prey. Although rarely demonstrated, highly specialized species are expected to outperform generalists when feeding on their preferred prey, whereas generalists are predicted to have more similar performance across a range of different prey. To test this theory, we compared the growth rates of two obligate coral-feeding butterflyfishes (Chaetodon trifascialis and Chaetodon plebeius) maintained on exclusive diets of preferred vs nonpreferred prey. In the field, C. trifascialis was the most specialized species, feeding almost exclusively on just one coral species, Acropora hyacinthus. C. plebeius meanwhile, was much less specialized, but fed predominantly on Pocillopora damicornis. During growth experiments, C. trifascialis grew fastest when feeding on A. hyacinthus and did not grow at all when feeding on less preferred prey (P. damicornis and Porites cylindrica). C. plebeius performed equally well on both A. hyacinthus and P. damicornis (its preferred prey), but performed poorly when feeding on P. cylindrica. Both butterflyfishes select coral species that maximize juvenile growth, but contrary to expectations, the more specialized species (C. trifascialis) did not outperform the generalist species (C. plebeius) when both consumed their preferred prey. Increased dietary specialization, therefore, appears to be a questionable strategy, as there was no evidence of any increased benefits to offset increases in susceptibility to disturbance.  相似文献   

7.
Several species of kleptoparasitic and araneophagic spiders (Araneae: Family Theridiidae, Subfamily Argyrodinae) are found in colonial webs of the orb-weaving spider Metepeira incrassata (Araneae, Araneidae) from Mexico, where they steal food and/or prey upon their spider hosts. Census data from natural M. incrassata colonies reveal that the incidence of these species increases with colony size. This pattern may reflect the presence of several other orb-weaving spiders, each with their own kleptoparasitic species, invading larger M. incrassata colonies. As the number of these associated spiders increases, so does the density and number of Argyrodinae species in M. incrassata colonies, suggesting that associated spiders might reduce their own kleptoparasite load by building their webs within M. incrassata colonies. This represents a twofold cost to M. incrassata, as a field enclosure experiment revealed that a primarily kleptoparasitic species (Argyrodes elevatus) may reduce prey available to their hosts, but a kleptoparasitic/araneophagic species (Neospintharus concisus) inflicts high mortality upon M. incrassata. However, the cost of kleptoparasitism and predation by these species may be offset in part for M. incrassata individuals in large colonies by certain defensive mechanisms inherent in groups, i.e., “attack-abatement” and “selfish herd” effects. We conclude that increased occurrence of kleptoparasitic and/or predatory Argyrodinae spiders is a consequence of colonial web building and is an important potential cost of group living for colonial web-building spiders.  相似文献   

8.
The zoeal larvae of brachyuran crabs must feed soon after hatching on a diet that includes large micro- and mesozooplankton in order to satisfy nutritional requirements. However, newly hatched larvae have been shown to ingest a variety of dinoflagellates, perhaps using microbial carbon sources to sustain them until they encounter more favored prey. Ingestion of dinoflagellates by larval crabs has been documented previously under conditions in which the larvae were exposed to algae provided in monoculture or in defined mixtures of cells. We report here on experiments conducted on the hatching stage of five crab species to determine if ingestion of dinoflagellates occurred when they were provided in combination with Artemia sp. nauplii or after a period of feeding on mesozooplankton. Quantitative measurements of chl a in the larval guts provided evidence of ingestion of algal cells. Active ingestion of the dinoflagellate Prorocentrum micans at specified intervals during an extended feeding period was determined on larvae of two crab species using fluorescently labeled cells provided for brief periods at prescribed time intervals. Stage 1 larvae of four of the five crab species ingested dinoflagellates when they were provided in combination with nauplii and larvae of all five species ingested cells after feeding solely on nauplii for 24 h. Ingestion of algal cells was first evident in the larval guts after 6 h of feeding at both low (200 cell ml−1) and high (1,000 cells ml−1) prey densities. Higher prey densities resulted in higher gut chl a. Larvae continuously exposed to dinoflagellates actively ingested cells at every 3 h interval tested over a 36 h period. Results confirm previous studies that larvae will ingest dinoflagellates even when they are encountered in a mixed prey field or when having previously fed. Ingestion of cells may occur on a continual basis over time.  相似文献   

9.
A brief survey of the ecology and biology of the Caspian Polyphemoidea   总被引:1,自引:0,他引:1  
Not less than 25 autochthonous species of Polyphemoidea live in the Caspian Sea; 5 of these species also inhabit the Azov and Black Seas and 3 the Aral Sea, but none is found beyond the Pontoaralocaspian basin. A great degree of polymorphism and morphological variability characterizes this group. Most Caspian Polyphemoidea exist in salinities of 12 to 13, and cannot tolerate great changes in salinity; however, 3 or 4 species in the Pontoasov basin can live in quite fresh water and populate the river reservoirs; these species do not tolerate ocean salinities over 8 to 10. All species inhabit mainly the upper layers of the sea (0 to 50 m; Cercopagis and Polyphemus exiguus down to 75 to 100 m), but avoid shallows under 5 to 15 m depth. Polyphemoidea perform diurnal vertical migrations, accumulating in surface layers during the hours of darkness and descending at sunrise; they also descend during rough weather conditions. Abundance of Polyphemoidea is subject to great seasonal variation. Most species appear in spring when the water temperature has reached 10° to 15°C; maximum abundance occurs in summer at water temperatures of 5° to 20°C, and Polyphemoidea disappear in autumn from the whole Caspian Sea except for deep areas of the South Caspian Sea, where the temperature does not drop under 10°C. Reproduction of the Caspian Podonidae is distinguished by a strikingly high rate of parthenogenesis, which is accompanied by neoteny, i.e. the embryos mature before birth. Bisexual reproduction, on the other hand, is suppressed; males and gamogenetic females containing winter eggs do not occur in all species of Podonidae and only in some species of Cercopagidae, in these latter mainly as single specimens. The majority of Cercopagidae have no males, being completely acyclic. Parthenogenesis shows a clear diurnal rhythm; delivery of young begins only after midnight and ends before sunrise. All Polyphemoidea are predators; they catch mobile prey and suck out its contents; this prevents successful observation of details of their feeding habit. However, it has been proved that Evadne anonyx feed mainly on copepods (Eurytemora) and small podonids, and this is probably true also of Cercopagis, as both these species are more marked predators than Podonidae from the open seas (Evadne nordmanni and other forms). Many aspects of taxonomy (intraspecific forms) and biology (reproduction of acyclic species, feeding, behaviour and functional morphology) are obscure and require further investigation.  相似文献   

10.
The copepod Paramacrochiron maximum was found in high numbers (up to 5,675 copepods/medusa) on the oral arms of the scyphozoan Catostylus mosaicus. This association was considered to be commensalism for the following reasons: P. maximum (Lichomolgidae) was abundant on the medusae (approximately 805 copepods/kg of medusae) and very rare in the water column (approximately 5.99×10-4 copepods/kg of water); copepodites and adults of the symbiont were present on the host; the copepods were on the medusae both day and night, at different times (nine occasions between March 1999 and May 2000) and different locations (Botany Bay and Lake Illawarra, NSW, Australia). Over 40 taxa of plankton were found on the oral arms of C. mosaicus (including protists, cnidarians, polychaetes, molluscs, a wide range of holoplanktonic and meroplanktonic crustaceans, chaetognaths and fish eggs). These taxa were abundant in the water column and we concluded that they were prey. Symbiotic amphipods and carangid fishes were found with medusae. We conclude that there is a symbiotic association between P. maximum and C. mosaicus and care should be taken not to confound these copepods with the prey of C. mosaicus. Poecilostomid copepods are well known for consuming mucus and feeding is likely to be a major reason for the association.Communicated by G.F. Humphrey, Sydney  相似文献   

11.
Hexaplex trunculus is one of the most widespread Mediterranean species of muricid gastropod and lives on rocky, sandy-mud and mud substrata. Although common in the Adriatic Sea, relatively little is known about its ecology especially feeding behaviour. The aim of this study was to explore the aspects of the feeding behaviour of H. trunculus using Arca noae, Modiolus barbatus and Mytilus galloprovincialis as experimental prey. Prey species preference, predator size, prey size choice, feeding rates, handling times and mode and place of attack were analysed. Typically, only M. galloprovincialis was attacked: A. noae rarely at the byssal gape and M. barbatus never. Small (40 mm) H. trunculus could not easily attack large M. galloprovincialis (65 mm) and preferred small (20 mm) and medium (35 mm) sized prey. Conversely, medium (55 mm) and large (70 mm) H. trunculus fed randomly on M. galloprovincialis of all three sizes. The feeding strategy adopted by H. trunculus individuals varied with respect to size. A tendency to drill the prey shell was recorded for small predators, whereas marginal chipping was adopted more frequently by large individuals. On average small, medium and large H. trunculus consumed 2.4±1.6 (range 0–4), 1.2±1.6 (range 0–4) and 2.0±2.1 (range 0–6) M. galloprovincialis, respectively. There was a statistically significant difference in prey-handling time with respect to the method of access adopted, predator and prey sizes. The time required to access a M. galloprovincialis individual by marginal chipping was considerably less than that required for drilling. H. trunculus consumed an average of 0.60±0.80 g M. galloprovincialis tissue dry weight over a 5-week period, that is, ~40% of its own tissue body weight. This translates to an average-sized (55 mm shell height) H. trunculus consuming ~18 M. galloprovincialis of 50 mm shell length (minimum marketable size) per year. H. trunculus showed no preference to drill either the left or right valves of M. galloprovincialis but generally attacked the posterior shell margin.  相似文献   

12.
Patterns of feeding in a population of Heliaster helianthus (Lamarck), a common and dominant species of starfish indigenous to the Pacific South American coast, were investigated in an intertidal habitat in central Peru from October 1986 to April 1987. The H. helianthus population comprised individuals of 3.5 to 30.2 cm body size (diameter) with two modal size classes. The number of rays ranged between 18 and 40, and individuals with 31 to 33 rays accounted for ca. 42% of the total population. There was a higher rate of increase in ray number with body size amongst small individuals(<13.0 cm diam). H. helianthus is capable of feeding on more than one prey item at a time (average of 5.6 to 13.2 prey items handled, with several predators observed to hold >100), and both the number of prey individuals captured and the total prey biomass were significantly correlated with predator size. Amongst a total of 1132 feeding observations, the largest number of predators (an average of 85.4% of those feeding) were preying on the mussel Semimytilus algosus whilst another mussel, Perumytilus purpuratus, ranked second with 21,9% of predators feeding. The proportion of S. algosus in the diet increased from 65.4% in the smallest predator size-group (10.9 cm diam) to 91.2% in the largest (19.0 cm). In contrast, P. purpuratus and barnacles were more highly represented in the diet of small H. helianthus. The smallest size-group (10.9 cm) had low dietary overlap with larger sizes and less specialized prey utilization. Two geographically separated populations of H. helianthus in Peru and Chile showed contrasting patterns of prey utilization. S. algosus and P. purpuratus comprised 85.5 and 6.5% by number in the diet of the Peruvian population, respectively, whilst corresponding figures for the Chilean population were 8.3 and 60.5%, with barnacles attaining a higher share (22.6%). However, the total number of prey individuals per feeding predator was almost the same in Peru and Chile, with 10.0 and 10.7 individuals, respectively. H. helianthus individuals of different sizes occupy slightly different microhabitats within the intertidal area, which, coupled with differential spatial distribution of prey species, results in the predator population being able to utilize a wide range of resources.  相似文献   

13.
The movements of two species of predatory whelks (Muricidae: Gastropoda) were examined on several rocky seashores in New South Wales, Australia, from 1980 to 1984. The smaller species, Morula marginalba Blainville, moved less far than the larger species, Thais orbita (Gmelin). Intermittent but rapid movement allowed T. orbita to shelter in exposed places low on the shore, but to feed on their preferred prey, barnacles, much higher up to shore. This resulted in a dynamic and unpredictable pattern of vertical foraging movements for this species. Compared to areas with intact prey or with barnacles that had been killed but not removed, M. marginalba moved quickly away from areas from which barnacles had been experimentally removed. Many M. marginalba left experimental plots on two shores without prey or crevices in which to shelter, whereas some stayed over 30 d in areas with either prey or crevices (but not both), and most remained in plots where both prey and crevices were available. Thus, the presence of suitable prey and crevices seems to influence the movements of both species, which respond in different ways, corresponding to their different mobilities. These results are discussed in relation to the behavioural cues involved and predation by the whelks.  相似文献   

14.
The feeding preferences of the coastal dolphins Pontoporia blainvillei and Sotalia guianensis in south-eastern Brazil (21o18′S–22o25′S) were assessed through the prey’s index of relative importance (IRI), total mercury concentration (Hgtot), and stable isotopic (δ15N and δ13C) to compare their efficiency in the discrimination of prey contribution to the predators’ diet. The IRI was the best tool to describe the dolphins’ preference, while Hgtot and δ15N seemed to be efficient as a trophic marker when the diet is made up of prey of varying sizes, as observed in S. guianensis. Both dolphins presented lighter δ15N than their prey species, which is an unusual pattern. However, as the sample size to isotope ratios analysis was small, especially to the dolphins, the results should be considered with caution, and further studies are necessary to corroborate these findings. The δ13C values characterized a typical coastal food chain, confirming the preferential area of these species.  相似文献   

15.
Pelagic seabirds obtain food from oceans where the availability of their prey changes rapidly both seasonally and spatially. Here, we investigated changes in the trophic habits of the critically endangered Balearic shearwater (Puffinus mauretanicus) through the breeding season and tested for dietary differences between sexes and age classes. We analysed δ15N and δ13C values in blood of adults during the pre-incubation, incubation and chick-rearing periods and of their chicks. Using a two-isotope mixing model, we estimated dietary contributions based on isotope values from potential prey species which included small pelagic species available naturally and demersal fish species available only from trawling discards. Balearic shearwaters showed clear isotopic and dietary variation through the breeding season. During pre-incubation, breeding adults appeared to exploit demersal fish, whereas during the incubation and chick-rearing period, they fed mainly on pelagic anchovies (Engraulis encrasicolus) and pilchards (Sardina pilchardus). Similarly, chicks were fed mainly with anchovies, a resource with a high energetic value. This variation in the dietary habits of adult shearwaters during the breeding season was probably related to both natural and fishery-induced seasonal changes in the availability of potential prey species within their main feeding grounds. However, changes in the nutritional requirements of the shearwaters could also play an important role. Indeed, diet differed between sexes during pre-incubation: females fed less on trawling discards and more on small pelagic fish than males. This sexual segregation in diet could be the consequence of higher nutritional requirements of females during this period. Our study reveals the differential importance of both trawling discards and small pelagic fish species for a pelagic seabird depending on the breeding period and illustrates the importance of considering the entire breeding season when making inferences about the importance of specific prey in seabird dietary studies.  相似文献   

16.
While qualitative observations of jellyfish intraguild predation abound in the literature, there are only few rate measurements of these interactions. We quantified predation rates among two common jellyfish in northern boreal waters, Cyanea capillata and its prey Aurelia aurita, both of which also feed on crustacean zooplankton and fish larvae. A series of incubation experiments using a wide range of prey concentrations (0.38–3.8 m−3) in large containers (2.6 m3) was carried out. By replenishing the prey continuously as they were captured we maintained a nearly constant prey concentrations. Ingestion rates increased linearly up to prey concentrations of 1.92 m−3, yielding maximum clearance rates of ∼2.37 ± 0.39 m3 predator−1 h−1 for C. capillata predators 16 ± 2.3 cm in diameter. Mean ingestion rate at saturated prey concentrations (1.92–3.85 m−3) was 4.01 ± 0.78 prey predator−1 h−1. Behavioral observations suggested that predators did not alter their swimming behavior during meals, and thus that feeding rates were generally handling limited rather than encounter limited. Predators captured more prey than needed, and semi-digested prey was often discarded when fresh prey was encountered.  相似文献   

17.
E. Mutlu 《Marine Biology》1999,135(4):603-613
The distribution of Mnemiopsis leidyi Agassiz, 1865 in the Black Sea was determined using plankton samples collected above the anoxic zone (maximum depth 200 m) in the summer, winter, and spring from 1991 to 1995. Distribution was patchy. Average biomasses of 15 to 500 g m−2 were measured, and abundances varied from 10 to 180 ind m−2. Biomass and abundance peaked in winter, and there was a secondary peak in the summer. The distribution of M. leidyi was correlated with hydrographic features in the Black Sea with higher concentrations in anticyclonic gyres. The centers of the two main cyclonic gyres generally had a low biomass of M. leidyi. From July 1992 to March 1995, the populations were largely offshore. M. leidyi were confined to the upper part of the mixed layer both day and night. Some individuals displayed a negative taxis to daylight and were concentrated below the thermocline at night. Smaller M. leidyi (1.5 to 2 cm) were present in the winter, and individuals reached maximum size in the summer. Although reproduction was continuous throughout the year, there were two distinct peaks: the larger peak in the summer and the smaller peak in the winter. Microscopic analysis of stomach contents showed that copepods and molluscs form their main diet. Received: 1 November 1997 / Accepted: 30 August 1999  相似文献   

18.
The foraging behaviours and dietary compositions of three co-occurring labrids (Ophthalmolepis lineolatus, Notolabrus gymnogenis and Pictilabrus laticlavius), which are conspicuous on rocky reefs in temperate south-eastern Australia, were investigated between 2003 and 2005. SCUBA observations at two locations showed that the feeding intensity, and hence the associated effects of these fishes on rocky reef invertebrate prey, was temporally consistent. Relative differences in the contributions of ingested prey and use of different feeding microhabitats demonstrated that the feeding ecology differed significantly among the three species. Thus, O. lineolatus fed on proportionately higher volumes of polychaetes, polyplacophorans, marginellid gastropods (especially Austroginella sp.), bivalves and echinoids, which were sighted opportunistically in a wide selection of microhabitats, but particularly in sand/rubble. Ambush hunting was used regularly by smaller N. gymnogenis and all sizes of P. laticlavius to forage on amphipods, small decapods and small gastropods at algal bases or fronds and Diopatra dentata tubes. Amphipods were similarly important in the diet of smaller O. lineolatus. Larger N. gymnogenis foraged opportunistically over an increased reef area and made greater use of microhabitats that offered minimal prey refuge (e.g. sand/rubble, bare rock/steel) from which common prey, in particular decapods, were obtained. The significant intra- and inter-specific differences in dietary compositions, allied with differences in the use of feeding microhabitats, would facilitate co-occurrence of these three conspicuous species and contribute to maintaining high richness of labrid species in reef systems. Echinoids were regularly consumed by each species but they made a moderate contribution to the diet of only O. lineolatus, which suggests that only one of the three labrids is likely to play a significant role in regulation of echinoid densities in these rocky reef habitats. However, the broad diets and diverse forging strategies employed by these labrid species imply that they have a system-wide influence on invertebrate prey on rocky reefs.  相似文献   

19.
The feeding ecology of Maurolicus muelleri, Lampanyctodes hectoris and Diaphus danae was examined from samples collected from continental slope waters of eastern Tasmania between April 1984 and April 1985. A total of 2 232 stomachs was analysed. M. muelleri, L. hectoris and D. danae fed primarily on euphausiids and secondarily on copepods, although larger D. danae (> 60 mm standard length) fed on other lanternfish (chiefly L. hectoris). The diets of M. muelleri and L. hectoris overlapped substantially. Diet overlaps between D. danae and the former species was low, however, due to the large biomass of fish present in D. danae. The prey taxa consumed changed with time of year and predator size. Stomach fullness (feeding intensity) varied seasonally in all three species, but only M. muelleri showed significant diel differences in fullness. The synchronization of the size structure of the predator populations and their feeding intensity, with seasonal variations in preferred prey, is proposed as a mechanism whereby each species maximizes its share of the available food resources.  相似文献   

20.
Scleractinian corals experience a wide range of flow regimes which, coupled with colony morphology, can affect the ability of corals to capture zooplankton and other particulate materials. We used a field enclosure oriented parallel to prevailing oscillatory flow on the forereef at Discovery Bay, Jamaica, to investigate rates of zooplankton capture by corals of varying morphology and polyp size under realistic flow speeds. Experiments were carried out from 1989 to 1992. Particles (Artemia salina cysts) and naturally occurring zooplankton attracted into the enclosures were used as prey for the corals Madracis mirabilis (Duchassaing and Michelotti) (narrow branches, small polyps), Montastrea cavernosa (Linnaeus) (mounding, large polyps), and Porites porites (Pallas) (wide branches, small polyps). This design allowed corals to be used without removing them or their prey from the reef environment, and avoided contact of zooplankton with net surfaces. Flow speed had significant effects on capture rate for cysts (M. mirabilis), total zooplankton (M. mirabilis, M. cavernosa), and non-copepod zooplankton (M. mirabilis). Zooplankton prey capture increased with prey concentration for M. mirabilis and M. cavernosa, over a broad range of concentrations, indicating that saturation of the feeding response had not occurred until prey density was over 104 items m−3, a concentration at least an order of magnitude greater than the normal range of reef zooplankton concentrations. Location of cyst capture on coral surfaces was not uniform; for M. cavernosa, sides and tops of mounds captured most particles, and for P. porites, capture was greatest near branch tops, but was close to uniform for M. mirabilis branches in all flow conditions. The present study confirms laboratory flume results, and field results for other species, suggesting that many coral species experience particle flux and encounter rate limitations at low flow speeds, decreasing potential zooplankton capture rates. Received: 17 September 1996 / Accepted: 22 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号