首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
For over one year, the Environmental Protection Commission of Hillsborough County (EPCHC) in Tampa, Florida, operated two dichotomous sequential particulate matter air samplers collocated with a manual Federal Reference Method (FRM) air sampler at a waterfront site on Tampa Bay. The FRM was alternately configured as a PM2.5, then as a PM10 sampler. For the dichotomous sampler measurements, daily 24-h integrated PM2.5 and PM10–2.5 ambient air samples were collected at a total flow rate of 16.7 l min−1. A virtual impactor split the air into flow rates of 1.67 and 15.0 l min−1 onto PM10–2.5 and PM2.5 47-mm diameter PTFE® filters, respectively. Between the two dichotomous air samplers, the average concentration, relative bias and relative precision were 13.3 μg m−3, 0.02% and 5.2% for PM2.5 concentrations (n=282), and 12.3 μg m−3, 3.9% and 7.7% for PM10–2.5 concentrations (n=282). FRM measurements were alternate day 24-h integrated PM2.5 or PM10 ambient air samples collected onto 47-mm diameter PTFE® filters at a flow rate of 16.7 l min−1. Between a dichotomous and a PM2.5 FRM air sampler, the average concentration, relative bias and relative precision were 12.4 μg m−3, −5.6% and 8.2% (n=43); and between a dichotomous and a PM10 FRM air sampler, the average concentration, relative bias and relative precision were 25.7 μg m−3, −4.0% and 5.8% (n=102). The PM2.5 concentration measurement standard errors were 0.95, 0.79 and 1.02 μg m−3; for PM10 the standard errors were 1.06, 1.59, and 1.70 μg m−3 for two dichotomous and one FRM samplers, respectively, which indicate the dichotomous samplers have superior technical merit. These results reveal the potential for the dichotomous sequential air sampler to replace the combination of the PM2.5 and PM10 FRM air samplers, offering the capability of making simultaneous, self-consistent determinations of these particulate matter fractions in a routine ambient monitoring mode.  相似文献   

2.
Between November 1995 and October 1996, particulate matter concentrations (PM10 and PM2.5) were measured in 25 study areas in six Central and Eastern European countries: Bulgaria, Czech Republic, Hungary, Poland, Romania and Slovak Republic. To assess annual mean concentration levels, 24-h averaged concentrations were measured every sixth day on a fixed urban background site using Harvard impactors with a 2.5 and 10 μm cut-point. The concentration of the coarse fraction of PM10 (PM10−2.5) was calculated as the difference between the PM10 and the PM2.5 concentration. Spatial variation within study areas was assessed by additional sampling on one or two urban background sites within each study area for two periods of 1 month. QA/QC procedures were implemented to ensure comparability of results between study areas. A two to threefold concentration range was found between study areas, ranging from an annual mean of 41 to 98 μg m−3 for PM10, from 29 to 68 μg m−3 for PM2.5 and from 12 to 40 μg m−3 for PM10−2.5. The lowest concentrations were found in the Slovak Republic, the highest concentrations in Bulgaria and Poland. The variation in PM10 and PM2.5 concentrations between study areas was about 4 times greater than the spatial variation within study areas suggesting that measurements at a single sampling site sufficiently characterise the exposure of the population in the study areas. PM10 concentrations increased considerably during the heating season, ranging from an average increase of 18 μg m−3 in the Slovak Republic to 45 μg m−3 in Poland. The increase of PM10 was mainly driven by increases in PM2.5; PM10−2.5 concentrations changed only marginally or even decreased. Overall, the results indicate high levels of particulate air pollution in Central and Eastern Europe with large changes between seasons, likely caused by local heating.  相似文献   

3.
This study attempts to determine the influence of air quality in a residential area near a medical waste incineration plant. Ambient air concentrations of polycyclic aromatic hydrocarbons (PAHs), PM10 and PM2.5 (PM—particulate matter) were determined by collecting air samples in areas both upwind and downwind of the plant. The differences in air pollutant levels between the study area and a reference area 11 km away from the plant were evaluated.Dichotomous samplers were used for sampling PM2.5 and PM10 from ambient air. Two hundred and twenty samples were obtained from the study area, and 100 samples were taken from a reference area. Samples were weighed by an electronic microbalance and concentrations of PM2.5 and PM10 were determined. A HPLC equipped with a fluorescence detector was employed to analyze the concentrations of 15 PAHs compounds adsorbed into PM2.5 and PM10.The experimental results indicated that the average concentrations of PM2.5 and PM10 were 30.34±17.95 and 36.81±20.45 μg m−3, respectively, in the study area, while the average ratio of PM2.5/PM10 was 0.82±0.01. The concentrations of PM2.5 and PM10 of the study area located downwind of the incinerator were significantly higher than the study area upwind of the incinerator (P<0.05).The concentration of PAHs in PM2.5 in the study area was 2.2 times higher than in the reference area (P<0.05). Furthermore, the benzo(a)pyrene concentrations in PM2.5 and PM10 were 0.11±0.05 ng m−3 and 0.12±0.06 ng m−3 in the study area, respectively. The benzo(a)pyrene concentrations of PM2.5 and PM10 in the study area were 7 and 5.3 times higher than in the reference area (P<0.05), respectively.The study indicated that the air quality of PM2.5, PM10 and PAHs had significant contamination by air pollutants emitted from a medical waste incineration factory, representing a public health problem for nearby residences, despite the factory being equipped with a modern air pollution control system.  相似文献   

4.
Fine particulate matter (PM2.5) was sampled at 5 Spanish locations during the European Community Respiratory Health Survey II (ECRHS II). In an attempt to identify and quantify PM2.5 sources, source contribution analysis by principal component analysis (PCA) was performed on five datasets containing elemental composition of PM2.5 analysed by ED-XRF. A total of 4–5 factors were identified at each site, three of them being common to all sites (interpreted as traffic, mineral and secondary aerosols) whereas industrial sources were site-specific. Sea-salt was identified as independent source at all coastal locations except for Barcelona (where it was clustered with secondary aerosols). Despite their typically dominant coarse grain-size distribution, mineral and marine aerosols were clearly observed in PM2.5. Multi-linear regression analysis (MLRA) was applied to the data, showing that traffic was the main source of PM2.5 at the five sites (39–53% of PM2.5, 5.1–12.0 μg m−3), while regional-scale secondary aerosols accounted for 14–34% of PM2.5 (2.6–4.5 μg m−3), mineral matter for 13–31% (2.4–4.6 μg m−3) and sea-salt made up 3–7% of the PM2.5 mass (0.4–1.3 μg m−3). Consequently, despite regional and climatic variability throughout Spain, the same four main PM2.5 emission sources were identified at all the study sites and the differences between the relative contributions of each of these sources varied at most 20%. This would corroborate PM2.5 as a useful parameter for health studies and environmental policy-making, owing to the fact that it is not as subject to the influence of micro-sitting as other parameters such as PM10. African dust inputs were observed in the mineral source, adding on average 4–11 μg m−3 to the PM2.5 daily mean during dust outbreaks. On average, levels of Al, Si, Ti and Fe during African episodes were higher by a factor of 2–8 with respect to non-African days, whereas levels of local pollutants (absorption coefficient, S, Pb, Cl) showed smaller variations (factor of 0.5–2).  相似文献   

5.
In August 2003 during the anticipated month of the 2008 Beijing Summer Olympic Games, we simultaneously collected PM10 and PM2.5 samples at 8, 100, 200 and 325 m heights up a meteorological tower and in an urban and a suburban site in Beijing. The samples were analysed for organic carbon (OC) and elemental carbon (EC) contents. Particulate matter (PM) and carbonaceous species pollution in the Beijing region were serious and widespread with 86% of PM2.5 samples exceeding the daily National Ambient Air Quality Standard of the USA (65 μg m−3) and the overall daily average PM10 concentrations of the three surface sites exceeding the Class II National Air Quality Standard of China (150 μg m−3). The maximum daily PM2.5 and PM10 concentrations reached 178.7 and 368.1 μg m−3, respectively, while those of OC and EC reached 22.2 and 9.1 μg m−3 in PM2.5 and 30.0 and 13.0 μg m−3 in PM10, respectively. PM, especially PM2.5, OC and EC showed complex vertical distributions and distinct layered structures up the meteorological tower with elevated levels extending to the 100, 200 and 300 m heights. Meteorological evidence suggested that there exist fine atmospheric layers over urban Beijing. These layers were featured by strong temperature inversions close to the surface (<50 m) and more stable conditions aloft. They enhanced the accumulation of pollutants and probably caused the complex vertical distributions of PM and carbonaceous species over urban Beijing. The built-up of PM was accompanied by transport of industrial emissions from the southwest direction of the city. Emissions from road traffic and construction activities as well as secondary organic carbon (SOC) are important sources of PM. High OC/EC ratios (range of 1.8–5.1 for PM2.5 and 2.0–4.3 for PM10) were found, especially in the higher levels of the meteorological tower suggesting there were substantial productions of SOC in summer Beijing. SOC is estimated to account for at least 33.8% and 28.1% of OC in PM2.5 and PM10, respectively, with higher percentages at the higher levels of the tower.  相似文献   

6.
Methylcyclopentadienyl manganese tricarbonyl (MMT) is a manganese-based gasoline additive used to enhance automobile performance. MMT has been used in Canadian gasoline for about 20 yr. Because of the potential for increased levels of Mn in particulate matter resulting from automotive exhausts, a large-scale population-based exposure study (∼1000 participant periods) was conducted in Toronto, Canada, to estimate the distribution of 3-day average personal exposures to particulate matter (PM2.5 and PM10) and Mn. A stratified, three-stage, two-phase probability, longitudinal sample design of the metropolitan population was employed. Residential indoor and outdoor, and ambient levels (at a fixed site and on a roof) of PM2.5, PM10, and Mn were also measured. Supplementary data on traffic counts, meteorology, MMT levels in gasoline, personal occupations, and activities (e.g. amount of vehicular usage) were collected. Overall precision (%RSD) for analysis of duplicate co-located samples ranged from 2.5 to 5.0% for particulate matter and 3.1 to 5.5% for Mn. The detection limits were 1.47 and 3.45 μg m-3 for the PM10 and PM2.5 fractions, respectively, and 5.50 and 1.83 ng m-3 for Mn in PM10 and PM2.5, respectively. These low detection limits permitted the reporting of concentrations for >98% of the samples. For PM10, the personal particulate matter levels (median 48.5 μg m-3) were much higher than either indoor (23.1 μg m-3) or outdoor levels (23.6 μg m-3). The median levels for PM2.5 for personal, indoor, and outdoor were 28.4, 15.4 and 13.2 μg m-3, respectively. The correlation between PM2.5 personal exposures and indoor concentrations was high (0.79), while correlations between personal and the outdoor, fixed site and roof site were low (0.16–0.27). Indoor Mn concentration distributions (in PM2.5 and PM10), unlike particulate matter, exhibited much lower and less variable levels that the corresponding outdoor data. The median personal exposure was 8.0 ng m-3, compared with 4.7 and 8.6 ng m-3, respectively, for the indoor and outdoor distributions. The highest correlations occurred for personal vs indoor data (0.56) and for outdoor vs roof site data (0.66), and vs fixed site data (0.56). The concentration of Mn in particulate matter, expressed in ppm (w/w), revealed that the fixed site was the highest, followed by the roof site, outdoor, indoor, and personal. The personal and indoor data showed a statistically significant correlation (0.68) while all other correlations between personal or indoor data and outdoor or fixed-site data were quite small. The low correlations of personal and indoor levels with outdoor levels suggest that different sources in the indoor and outdoor microenvironments produce particle matter with dissimilar composition. The correlation results indicate that neither the roof- nor fixed-site concentrations can adequately predict personal particulate matter or Mn exposures.  相似文献   

7.
Twenty-four hour PM2.5 samples from a rural site, an urban site, and a suburban site (next to a major highway) in the metropolitan Atlanta area in December 2003 and June 2004 were analyzed for 19 polycyclic aromatic hydrocarbons (PAH). Extraction of the air samples was conducted using an accelerated solvent extraction method followed by isotope dilution gas chromatography/mass spectrometry determination. Distinct seasonal variations were observed in total PAH concentration (i.e. significantly higher concentrations in December than in June). Mean concentrations for total particulate PAHs in December were 3.16, 4.13, and 3.40 ng m?3 for the urban, suburban and rural sites, respectively, compared with 0.60, 0.74, and 0.24 ng m?3 in June. Overall, the suburban site, which is impacted by a nearby major highway, had higher PAH concentration than did the urban site. Total PAH concentrations were found to be well correlated with PM2.5, organic carbon (OC), and elemental carbon (EC) in both months (r2 = 0.36–0.78, p < 0.05), although the slopes from the two months were different. PAHs represented on average 0.006% of total PM2.5 mass and 0.017% of OC in June, compared with 0.033% of total PM2.5 and 0.14% of OC in December. Total PAH concentrations were also correlated with potassium ion (r2 = 0.39, p = 0.014) in December, but not in June, suggesting that in winter biomass burning can potentially be an important source for particulate PAH. Retene was found at a higher median air concentration at the rural site than at the urban and suburban sites—unlike the rest of the PAHs, which were found at lower levels at the rural site. Retene also had a larger seasonal difference and had the weakest correlation with the rest of the PAHs measured, suggesting that retene, in particular, might be associated with biomass burning.  相似文献   

8.
Ambient daily PM10 aerosol samples were collected at two sites in Tanzania in May and June 2005 (during the wet season), and their chemical characteristics were studied. The sites were a rural site in Morogoro and an urban kerbside site in Dar es Salaam. A Gent PM10 stacked filter unit sampler with sequential Nuclepore polycarbonate filters, providing fine and coarse size fractions, and a PM10 sampler with quartz fibre filters were deployed. Parallel collections of 24 h were made with the two samplers and the number of these collections was 13 in Morogoro and 16 in Dar es Salaam. The average mass concentration of PM10 was 27 ± 11 μg/m3 in Morogoro and 51 ± 21 μg/m3 in Dar es Salaam. In Morogoro, the mean concentrations of organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were 6.8, 0.51, and 2.8 μg/m3, respectively. In contrast, higher mean concentrations (11.9, 4.6, and 3.3 μg/m3, respectively) were obtained for Dar es Salaam. At both sites, species and elements, such as black carbon, NH4+, non-sea-salt SO42?, K, and Ni (and at Dar es Salaam also V, As, Br, and Pb) were mainly present in the fine size fraction. The common crustal and sea-salt elements, including Na, Mg, Al, Si, Cl, Ca, Ti, Mn, Fe, and Sr, and also NO3? and P (and to a lesser extent Cu and Zn) were concentrated in the coarse particles. Aerosol chemical mass closure indicated that the PM10 mass in Morogoro consisted, on average, of 48% organic matter (OM), 44% crustal matter, 4% sea salt, and 2% EC, while in Dar es Salaam OM, crustal matter, sea salt, and EC represented 37%, 32%, 9%, and 9% of the PM10 mass. The contributions of the secondary inorganic aerosol (non-sea-salt sulphate, nitrate, and ammonium) were small, i.e., only 5% in total at each site. Carbonaceous materials and crustal matter were thus the most important components of the PM10 mass. It is suggested that biomass burning is a major contributor to the OM; at Dar es Salaam there is also a very substantial contribution from traffic. A source apportionment calculation indicated that 68% of the OC at this site originated from traffic exhaust versus 32% from charcoal burning. The crustal matter at Morogoro is likely mainly attributable to soil dust resuspension, whereas in Dar es Salaam it is likely mostly resuspended road dust.  相似文献   

9.
A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM2.5 mass. The lowest concentrations of PM2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM2.5 mass concentrations ranging from 21 to 25 ug m?3. These sites were also observed to have the highest OC to EC ratios (4.1–5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%–55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m?3 to 4.9 μgC m?3; 30%–74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.  相似文献   

10.
A particle measurement campaign was conducted in a suburban environment near a major road in Kuopio, Central Finland from 3 August to 9 September 1999. The mass concentrations of fine particles (PM2.5) were measured simultaneously at distances of 12, 25, 52 and 87 m from the centre of a major road at a height of 1.8 m, using identical samplers. The concentration measurements were conducted during 16 daytime hours (from 6.00 a.m. to 10.00 p.m.) for 27 days. Traffic flows and relevant meteorological parameters were measured on-site; meteorological measurements from a nearby synoptic weather station were also utilised. We also suggest a preliminary model for predicting the concentrations of PM2.5 and apply this model in order to analyse the measured data. The regionally and long-range transported contribution was evaluated on the basis of a semi-empirical mathematical model utilising as input values the daily sulphate, nitrate and ammonium measurements at the EMEP stations (Co-operative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe). The influence of primary vehicular emissions from the nearest roads was evaluated using a roadside emission and dispersion model, CAR-FMI, in combination with a meteorological pre-processing model, MPP-FMI. The contribution of non-exhaust particulate matter emissions (including resuspension of particulate matter from road surfaces) was estimated simply to be directly proportional to the concentrations originating from primary vehicular emissions. Comparison of the predicted results and measurements yields information on the relative importance of various source categories of the measured concentrations of PM2.5. The regionally and long-range transported contribution, the primary and non-exhaust vehicular emissions, and other sources were estimated to contribute on average 41±6%, 33±6% and 26±7% of the observed PM2.5 concentrations, respectively. The model presented could also be applied in other European cities for analysing the source contributions to measured fine particulate matter concentrations.  相似文献   

11.
Trees are efficient scavengers of particulate matter and are characterised by higher rates of dry deposition than other land types. To estimate the potential of urban tree planting for the mitigation of urban PM10 concentrations, an atmospheric transport model was used to simulate the transport and deposition of PM10 across two UK conurbations (the West Midlands and Glasgow). Tree planting was simulated by modifying the land cover database, using GIS techniques and field surveys to estimate reasonable planting potentials. The model predicts that increasing total tree cover in West Midlands from 3.7% to 16.5% reduces average primary PM10 concentrations by 10% from 2.3 to 2.1 μg m−3 removing 110 ton per year of primary PM10 from the atmosphere. Increasing tree cover of the West Midlands to a theoretical maximum of 54% by planting all available green space would reduce the average PM10 concentration by 26%, removing 200 ton of primary PM10 per year. Similarly, for Glasgow, increasing tree cover from 3.6% to 8% reduces primary PM10 concentrations by 2%, removing 4 ton of primary PM10 per year. Increasing tree cover to 21% would reduce primary PM10 air concentrations by 7%, removing 13 ton of primary PM10 per year.  相似文献   

12.
Results concerning the levels and elemental compositions of daily PM10 samples collected at four air quality monitoring sites in Palermo (Italy) are presented. The highest mean value of PM10 concentrations (46 μg m−3, with a peak value of 158 μg m−3) was recorded at the Di Blasi urban station, and the lowest at Boccadifalco station (25 μg m−3), considered as a sub-urban background station. Seventeen elements (Al, As, Ba, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Sb, Sr, U, V, Zn) were measured by ICP-MS. Al and Fe showed the highest concentrations, indicating the significant contribution of soil and resuspended mineral particles to atmospheric PM10. Ba, Cr, Cu, Mn, Mo, Ni, Pb, Sb, V and Zn had higher concentrations at the three urban sampling sites than at the sub-urban background station. Besides soil-derived particles, an R-mode cluster analysis revealed a group of elements, Mo, Cu, Cr, Sb and Zn, probably related to non-exhaust vehicle emission, and another group, consisting of Ba, As and Ni, which seemed to be associated both with exhaust emissions from road traffic, and other combustion processes such as incinerators or domestic heating plants. The results also suggest that Sb, or the association Sb–Cu–Mo, offers a way of tracing road traffic emissions.  相似文献   

13.
Despite their burden in urban particulate air pollution, road traffic non-exhaust emissions are often uncontrolled and information about the effectiveness of mitigation measures on paved roads is still scarce. The present study is aimed to evaluate the effectiveness of mechanical sweeping/water flushing treatments in mitigating urban road dust resuspension and to quantify the real benefit in terms of ambient PM10 concentrations. To this aim a specific campaign was carried out in a heavily trafficked central road of Barcelona (Spain), a Mediterranean city suffering from a traffic-related pollution, both for a high car density and a frequent lack of precipitation. Several street washings were performed by means of mechanical sweepers and pressure water during night in all traffic lanes and sidewalks. PM10 levels were simultaneously compared with four reference urban background air quality stations to interpret any meteorological variability. At the downwind measurement site, PM10 concentrations registered a mean daily decrease of 8.8 μg m?3 during the 24 h after street washing treatments. However 3.7–4.9 μg m?3 of such decrease were due to the meteorological variability detected at the upwind site, as well as at two of the reference sites. This reveals that an effective decrease of 4–5 μg m?3 (7–10%) can be related to street washing efficiency. Mitigation of road dust resuspension was confirmed by investigating the chemical composition of airborne-PM10 filters. Concentrations of Cu, Sb, Fe and mineral matter decrease significantly with respect to concentrations of elemental carbon, used as tracer for exhaust diesel emissions. High efficiency of street washing in reducing road dust loads was found by performing periodic samplings both on the treated and the untreated areas.  相似文献   

14.
Fine particles were collected over four seasons from October 1995 to August 1996 to evaluate the chemical characteristics of principal PM2.5 components in Chongju, South Korea. The annual mean concentrations of PM2.5 (dp⩽2.5 μm), sulfate, nitrate, ammonium, elemental carbon (EC) and organic carbon (OC) were 44.2, 8.22, 3.63, 2.84, 4.44 and 4.99 μg m−3, respectively. The sum of the species measured from this study accounted for 50–62% of the PM2.5 mass. Sulfate was the most abundant species and constituted 13–23% of the PM2.5 mass. The EC and OC accounted for 17–28% of PM2.5. The correlation between OC and EC was strong, and the annual mean ratio of OC/EC was 1.12, suggesting that OC measured in the Chongju area may be emitted directly in particulate form as a primary aerosol.  相似文献   

15.
This study conducted roadside particulate sampling to measure the total suspended particulate (TSP), PM10 (particles <10 μm in aerodynamic diameter) and PM2.5 (particles <2.5 μm in aerodynamic diameter) mass concentration in 11 urbanized and densely populated districts in Hong Kong. One hundred and thirty-three samples were obtained to measure the mass concentrations of TSP, PM10 and PM2.5. According to these results, the TSP, PM10 and PM2.5 mass concentrations varied from 94.85 to 301.63 μg m−3, 67.67 to 142.68 μg m−3 and 50.01 to 125.12 μg m−3, respectively. The PM2.5/PM10 ratio of all samples was 0.82 which ranged from 0.62 to 0.95. The PM levels and PM ratios in metropolitan Hong Kong significantly fluctuated from site-to-site and over time. The PM2.5 mass concentration in different districts corresponding to urban industrial, new town, urban residential and urban commercial were 77.64, 87.50, 106.96 and 88.54 μg m−3, respectively. The PM2.5 level is high in Hong Kong, and for individual sampling, more than 60% daily measurements exceeded the NAAQS. The mass fraction of PM2.5 in PM10 and TSP is relatively high when compared with overseas studies.  相似文献   

16.
The aim of the present study is to identify and quantify the main sources of polycyclic aromatic hydrocarbons (PAHs) associated with aerosols (PM10) collected at three different sampling stations: 8° Distrito, CEASA and Charqueadas. The samples were collected between November 2001 and November 2002, and the concentrations of 16 major PAHs were determined according to EPA. The filters containing particulate matter were extracted with dichloromethane in Soxhlet and the extracts were later analysed in a gaseous chromatograph coupled to a mass spectrometer (GS/MS). The average concentrations of PAHs ranged between 0.04 and 2.30 ng m−3. The analysis of principal components was applied to the chemical and meteorological variables in order to facilitate the identification of sources of PAHs emission into the atmospheric particulate. The study identified the following sources of PAHs: vehicular emissions, such as diesel oil, petrol, alcohol, and kerosene; industrial emissions, like lubricating oils; emissions from hospital waste burning, and coal burning at power plants.  相似文献   

17.
Children’s exposures to ambient and non-ambient fine particulate matter (PM2.5) were determined using the sulphate and elemental carbon components of the PM2.5 mixture as tracers of the ambient contribution during a 6-week winter period in Prince George, British Columbia, Canada. Personal exposures to PM2.5 were measured in children at 5 elementary schools located throughout the city and ambient samples were collected on school rooftops. Average ambient levels and personal exposures during this time period were 13.8 μg m?3 and 16.4 μg m?3 respectively. From the data pooled across individuals, use of the two different tracers indicated identical estimates of median exposure to ambient PM2.5 (7.5 μg m?3) and similar estimates of non-ambient generated exposure (6.4 and 5.0 μg m?3) and infiltration (0.49 and 0.52) for the sulphate and elemental carbon approach, respectively. The median fraction of the ambient concentration resulting in exposure or exposure factors were 0.54 and 0.55 respectively, however lower values of 0.46 and 0.42 were determined from regression analysis. A strong association was found between exposure to ambient PM2.5 and measured ambient concentrations at both the closest school monitor (median r = 0.92) and a central site (median r = 0.88) demonstrating that the central site monitor was suitable for assessing longitudinal ambient generated exposure throughout the city. These results support the use of elemental carbon as a tracer of ambient generated exposure and the use of ambient data as estimates of longitudinal changes in children’s exposure in this setting. The importance of both ambient and non-ambient sources of PM2.5 is emphasized by their almost equal contribution to total personal exposures. Comparison with other studies suggests a limited influence of climate and the cold season in Prince George on exposure levels and found similar mean non-ambient generated exposures despite large variability across and within subjects in any given location.  相似文献   

18.
Aluminium (Al) is one of the trace inorganic metals present in atmospheric particles. Al speciation study is essential to better evaluate the mobility, availability, and persistence of trace Al and Al species in the atmosphere. This paper reports Al distribution and speciation in atmospheric particles with aerodynamic diameters >10.0, 10.0–2.5 and <2.5 μm in the urban area of Nanjing, China. Urban particles were collected with a high-volume sampling system equipped with a cascade impactor, which effectively separates the particulate matter into three size ranges. Particulate Al was fractionated into five different forms (insoluble, oxide, organic, carbonate, and exchangeable species) by the modified five-step Tessier's sequential extraction procedure. The main points are as follows: (1) The average levels of Al in PM2.5, PM2.5–10 and PM>10 are 2.02±0.35, 3.04±0.43 and 6.32±0.76 μg m−3, respectively, with PM2.5, PM2.5–10 and PM>10 constituting respectively, 17.8±3.1%, 26.7±3.8% and 55.5±6.7% of suspended particulate matter (SPM) mass (11.38 μg m−3). (2) The vertical profile of airborne Al in the above three size fractions has been estimated. A significant increase in airborne Al concentrations was found for PM2.5, PM2.5–10 and PM>10 as the sampling height above the ground increased from 2.5 to 17.5 m; however, there was an obvious decrease in airborne Al concentrations between 17.5 and 40.0 m. The maximum mean of total Al in PM2.5, PM2.5–10 and PM>10 occurred between 12.5 and 20.0 m above the ground. (3) The distribution of Al speciation was studied. It was found that the size distribution of airborne Al species followed the order: insoluble species>oxide species>organic species>carbonate species>exchangeable species.  相似文献   

19.
Recent research interest has been focused on road dust resuspension as one of the major sources of atmospheric particulate matter in an urban environment. Given the dearth of studies on the variability of the PM10 fraction of road deposited sediments, our understanding of the main factors controlling this pollutant is incomplete. In the present study a new sampling methodology was devised and applied to collect PM10 deposited mass from 1 m2 of road pavement. PM10 road dust fraction was sampled directly from active traffic lanes at 23 sampling sites during a campaign in Barcelona (Spain) in June 2007. The aim of the study was to gain more insight into the variability of mass and chemistry of road dust in different urban environments, such as the city centre, ring roads, and locations nearby demolition/construction sites. The city centre showed values of PM10 road dust within a range of 3–23 mg m?2, whereas levels reached 24–80 mg m?2 in locations affected by transport of uncovered heavy trucks. The largest dust loads were measured in the proximity of demolition/construction sites and the harbor entry with values up to 328 mg m?2.The city centre road dust profiles (%) were enriched in OC, EC, Fe, S, Cu, Zn, Mn, Cr, Sb, Sn, Mo, Zr, Hf, Ge, Ba, Pb, Bi, SO42?, NO3?, Cl? and NH4+, but several crustal components such as Ca, Ti, Na, and Mg were also considerably concentrated. Locations affected by construction and demolition activities had high levels of crustal components such as Ca, Li, Sc, Sr, Rb and also As whereas ring roads, characterized by a higher load of uncovered heavy trucks showed an intermediate composition.Levels of PM10 components per area were also evaluated to quantify the resuspendable amount of each element from 1 m2. In the inner city environment mean values of 1363 μg Ca m?2, 816 μg OC m?2, 239 μg EC m?2, 13 μg Cu m?2, 12 μg Zn m?2, 1.9 μg Sb m?2 and 2.0 μg Pb m?2, in PM10 in all cases, were registered.Moreover the deposited PM load at demolition/construction sites acts as a reservoir or trap for traffic-related particles, which gives rise to large amounts of hazardous pollutants, available for resuspension.  相似文献   

20.
The size-fractionated particulate mercury in ambient air was collected at the top of a university campus building in Shanghai from March 2002 to September 2003. Wet digestion followed by cold vapor atom adsorption spectroscopy (CVAAS) was employed to analyze total particulate mercury concentration. Two-step extraction was performed to differentiate volatile particle-phase mercury (VPM), reactive particle-phase mercury (RPM) and inert particle-phase mercury (IPM). The average concentrations of mercury in PM1.6, PM8 and total suspended particle (TSP) were 0.058–0.252, 0.148–0.398 and 0.233–0.529 ng m−3, respectively. About 50%–60% of mercury in PM8 was in PM1.6, and about 60%–70% of mercury in TSP was in PM8. Particulate mercury was mainly concentrated on fine particles. The mercury fraction in fine particulate matters (<1.6 μm) was over 4 μg g−1 while 1–2 μg g−1 in TSP. Both were much higher than background values, suggesting that anthropogenic sources are the predominant emission contributors. Seasonal variation indicated that the mercury in TSP in spring was higher than that in summer; however, the mercury in fine particles (<1.6 μm) varied little. The fact that fine particulate mercury (<1.6 μm) was well correlated with sulfate and elemental carbon, but not with fluoride, chloride, nitrate and organic carbon, demonstrates that fine particulate mercury is closely associated with stationary sources and gas–particle transformation. Speciation analysis of mercury showed that VPM fraction decreased with the decrease of particle size, while IPM fraction increased and occupied over 50% in particle <1.6 μm. The detailed species in VPM, RPM and IPM were discussed. Coal burning was estimated to contribute approximately 80% of total atmospheric mercury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号