首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relative kinetic studies have been performed on the reactions of Cl atoms with a series of methyl alkyl esters in a 405-liter borosilicate glass chamber at (298 ± 3) K and one atmosphere of synthetic air using in situ FTIR spectroscopy to monitor the reactants. Rate coefficients (in units of cm3 molecule?1 s?1) were determined for the following compounds: methyl acetate (2.48 ± 0.58) × 10?12; methyl propanoate (1.68 ± 0.36) × 10?11; methyl butanoate (4.77 ± 0.87) × 10?11; methyl pentanoate (7.84 ± 1.15) × 10?11; methyl hexanoate (1.09 ± 0.31) × 10?10; methyl heptanoate (1.56 ± 0.37) × 10?10; methyl cyclohexane carboxylate (3.32 ± 0.76) × 10?10; methyl-2-methyl butanoate (9.41 ± 1.39) × 10?11.In addition rate coefficients (in units of 10?11 cm3 molecule?1 s?1) have been obtained for the reactions of OH radicals with the following compounds: methyl butanoate (3.55 ± 0.71), methyl pentanoate (5.41 ± 1.08), and methyl-2-methyl butanoate (4.08 ± 0.82).Using the kinetic rate data tropospheric lifetimes for the methyl alkyl esters with respect to their reactions with OH, and Cl have been estimated for typical ambient air concentrations of these oxidants.  相似文献   

2.
Acrylate esters are α,β-unsaturated esters that contain vinyl groups directly attached to the carbonyl carbon. These compounds are widely used in the production of plastics and resins. Atmospheric degradation processes of these compounds are currently not well understood. The kinetics of the gas phase reactions of OH radicals with methyl 3-methylacrylate and methyl 3,3-dimethylacrylate were determined using the relative rate technique in a 50 L Pyrex photoreactor using in situ FTIR spectroscopy at room temperature (298?±?2 K) and atmospheric pressure (708?±?8 Torr) with air as the bath gas. Rate coefficients obtained were (in units cm3 molecule?1 s?1): (3.27?±?0.33)?×?10?11 and (4.43?±?0.42)?×?10?11, for CH3CH═CHC(O)OCH3 and (CH3)2CH═CHC(O)OCH3, respectively. The same technique was used to study the gas phase reactions of hexyl acrylate and ethyl hexyl acrylate with OH radicals and Cl atoms. In the experiments with Cl, N2 and air were used as the bath gases. The following rate coefficients were obtained (in cm3 molecule?1 s?1): k3 (CH2═CHC(O)O(CH2)5CH3?+?Cl)?=?(3.31?±?0.31)?×?10?10, k4(CH2═CHC(O)OCH2CH(CH2CH3)(CH2)3CH3?+?Cl)?=?(3.46?±?0.31)?×?10?10, k5(CH2═CHC(O)O(CH2)5CH3?+?OH)?=?(2.28?±?0.23)?×?10?11, and k6(CH2═CHC(O)OCH2CH(CH2CH3)(CH2)3CH3?+?OH)?=?(2.74?±?0.26)?×?10?11. The reactivity increased with the number of methyl substituents on the double bond and with the chain length of the alkyl group in –C(O)OR. Estimations of the atmospheric lifetimes clearly indicate that the dominant atmospheric loss process for these compounds is their daytime reaction with the hydroxyl radical. In coastal areas and in some polluted environments, Cl atom-initiated degradation of these compounds can be significant, if not dominant. Maximum Incremental Reactivity (MIR) index and global warming potential (GWP) were also calculated, and it was concluded that these compounds have significant MIR values, but they do not influence global warming.  相似文献   

3.

Background, aim, and scope  

Acrylate and methacrylate esters are α,β-unsaturated esters that contain vinyl groups directly attached to the carbonyl carbon (CH2=CHCOO– and CH2=CCH3COO–, respectively) and are widely used in the polymer plastic and resin production. Rate coefficients for Cl reactions for most of the unsaturated esters have not been previously determined, and a good understanding is needed of all the atmospheric oxidation processes of these compounds in order to determine lifetimes in the atmosphere and to evaluate the impact of these reactions on the formation of photo-oxidants and therefore on health and environment.  相似文献   

4.
5.
Rate coefficients for the gas-phase reactions of Cl atoms with a series of unsaturated esters CH2C(CH3)C(O)OCH3 (MMA), CH2CHC(O)OCH3 (MAC) and CH2C(CH3)C(O)O(CH2)3CH3 (BMA) have been measured as a function of temperature by the relative technique in an environmental chamber with in situ FTIR detection of reactants. The rate coefficients obtained at 298 K in one atmosphere of nitrogen or synthetic air using propene, isobutene and 1,3-butadiene as reference hydrocarbons were (in units of 10?10 cm3 molecule?1 s?1) as follows: k(Cl+MMA) = 2.82 ± 0.93, k(Cl+MAC) = 2.04 ± 0.54 and k(Cl+BMA) = 3.60 ± 0.87. The kinetic data obtained over the temperature range 287–313 K were used to derive the following Arrhenius expressions (in units of cm3 molecule?1 s?1): k(Cl+MMA) = (13.9 ± 7.8) × 10?15 exp[(2904 ± 420)/T], k(Cl+MAC) = (0.4 ± 0.2) × 10?15 exp[(3884 ± 879)/T], k(Cl+BMA) = (0.98 ± 0.42) × 10?15 exp[(3779 ± 850)/T]. All the rate coefficients display a slight negative temperature dependence which points to the importance of the reversibility of the addition mechanism for these reactions. This work constitutes the first kinetic and temperature dependence study of the reactions cited above.An analysis of the available rates of addition of Cl atoms and OH radicals to the double bond of alkenes and unsaturated and oxygenated volatile organic compounds (VOCs) at 298 K has shown that they can be related by the expression: log kOH = 1.09 log kCl ? 0.10. In addition, a correlation between the reactivity of unsaturated VOCs toward OH radicals and Cl atoms and the HOMO of the unsaturated VOC is presented. Tropospheric implications of the results are also discussed.  相似文献   

6.
A gas-phase reaction mechanism for the atmospheric photooxidations of over 100 alkanes, alkenes, aromatic hydrocarbons, alcohols, ethers and other compounds representative of the range of reactive organics emitted into polluted atmospheres is described. Most of these organic species are represented using generalized reactions with variable rate constants and product yield coefficients for which individual assignments were made or estimated. This mechanism employs 19 species to represent the reactive oxygenated and organic nitrate products, and includes the gas-phase reactions of SO2, but does not include heterogeneous or liquid-phase reactions. The evaluation of this mechanism, by comparison of its predictions against the results of over 500 environmental chamber experiments, is described in a separate paper. This detailed mechanism can be used in assessments of relative atmospheric reactivities of organic compounds, and can provide the basis for the derivation of more condensed mechanisms for use in air quality simulation models.  相似文献   

7.
Rate coefficients for the reactions of hydroxyl radicals and chlorine atoms with acrylic acid and acrylonitrile have been determined at 298 K and atmospheric pressure. The decay of the organics was followed using a gas chromatograph with a flame ionization detector (GC-FID) and the rate constants were determined using a relative rate method with different reference compounds. Room temperature rate constants are found to be (in cm3 molecule−1 s−1): k1(OH+CH2CHC(O)OH)=(1.75±0.47)×10−11, k2(Cl+CH2CHC(O)OH)=(3.99±0.84)×10−10, k3(OH+CH2CHCN)=(1.11±0.33)×10−11 and k4(Cl+CH2CHCN)=(1.11±0.23)×10−10 with uncertainties representing ±2σ. This is the first kinetic study for these reactions under atmospheric pressure. The rate coefficients are compared with previous determinations taking into account the effect of pressure on the rate constants. The effect of substituent atoms or groups on the overall rate constants is analyzed in comparison with other unsaturated compounds in the literature. In addition, atmospheric lifetimes based on the homogeneous sinks of acrylic acid and acrylonitrile are estimated and compared with other tropospheric sinks for these compounds.  相似文献   

8.
Products of the gas-phase reactions of OH radicals (in the presence of NO) and O3 with the biogenic organic compound 2-methyl-3-buten-2-ol have been investigated using gas chromatography with flame ionization detection (GC-FID), combined gas chromatography–mass spectrometry (GC-MS), gas chromatography with Fourier transform infrared detection (GC-FTIR), in situ FT-IR spectroscopy and in situ atmospheric pressure ionization tandem mass spectrometry (API-MS/MS). Formaldehyde, 2-hydroxy-2-methylpropanal and acetone were identified from both the OH radical and O3 reactions, glycolaldehyde and organic nitrate (s) were also observed from the OH radical reaction, and the OH radical formation yield from the O3 reaction was measured. The formaldehyde, 2-hydroxy-2-methylpropanal, glycolaldehyde, acetone and organic nitrate yields from the OH radical reaction were 0.29±0.03, 0.19±0.07, 0.61±0.09, 0.58±0.04 and 0.05±0.02, respectively, and the formaldehyde, 2-hydroxy-2-methylpropanal and OH radical formation yields from the O3 reaction were 0.29±0.03, 0.30±0.06 (0.47 from FT-IR measurements) and 0.19 (uncertain to a factor of 1.5), respectively. Acetone was also observed from the O3 reaction, but appeared to be formed from secondary reactions. Reaction mechanisms are presented and discussed.  相似文献   

9.
10.
The relative rate method has been used to determine the rate constants for the gas-phase reactions of NO3 radicals with a series of acrylate esters: ethyl acrylate (k1), n-butyl acrylate (k2), methyl methacrylate (k3) and ethyl methacrylate (k4) at 298 ± 1 K and 760 Torr. The obtained rate constants are k1 = (1.8 ± 0.25) × 10?16 cm3 molecule?1 s?1, k2 = (2.1 ± 0.33) × 10?16 cm3 molecule?1 s?1, k3 = (3.6 ± 1.2) × 10?15 cm3 molecule?1 s?1, k4 = (4.9 ± 1.7) × 10?15 cm3 molecule?1 s?1. The experimental rate constants are in good agreement with theoretical rate constants calculated by an algorithm of the correlation between the rate constants and the orbital energies for the reactions of unsaturated VOCs with NO3 radicals. In addition, the atmospheric lifetimes of the compound against NO3 attack are estimated and the results show that NO3 reactions contribute little to the atmospheric losses of acrylate esters except in polluted regions.  相似文献   

11.
The kinetics of two structurally similar unsaturated alcohols, 3-butene-2-ol and 2-methyl-3-butene-2-ol (MBO232), with Cl atoms have been investigated for the first time, as a function of temperature using a relative method. As far as we know, the present work also provides the first value for 3-buten-2-ol. The coefficient at room temperature was also obtained for 2-propene-1-ol (allyl alcohol). The reactions were investigated using a 400 L Teflon reaction chamber coupled with gas chromatograph-coupled with flame-ionization detection (GC-FID) detection. The experiments were performed at atmospheric pressure and at temperatures between 256 and 298 K in air or nitrogen as the bath gas. The obtained kinetic data were used to derive the Arrhenius expressions, kMBO232=(2.83±2.50)×10−14 exp (2670±249)/T, k3-buten-2-ol=(0.65±1.60)×10−15 exp (3656±695)/T (in units of cm3 molecule−1 s−1). Finally, results and atmospheric implications are discussed and compared with the reactivity with OH and NO3 radicals.  相似文献   

12.
The attachment rate of atoms and ions to the atmospheric aerosol indoors and outdoors was studied by means of the Tn(220Rn) decay products, which have a diffusion coefficient D = 0.068 cm2s−1 and a sticking probability S = 1. In a nuclei concentration range between 0.6–7 × 104 particles cm−3 the attachment rates were 0.009–0.05 s−1 (relative humidity : 30–50%) corresponding to a half-life of attachment 77 to 14 seconds. The change of the average nuclei size with humidity could be determined by measuring the attachment rate for different water vapour concentrations. By changing the humidity from 20% to about 100%, the average particle size increases up to a factor of 2.1.  相似文献   

13.
14.
The stable-carbon kinetic isotope effects (KIEs) associated with the production of methacrolein (MACR) and methyl vinyl ketone (MVK) from the reactions of isoprene with ozone and OH radicals were studied in a 25 L reaction chamber at (298±2) K and ambient pressure. The time dependence of both the stable-carbon isotope ratios and the concentrations was determined using a gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) system. The average yields of 13C-containing MACR and MVK generated from the ozone reaction of 13C-containing isoprene differed by ?3.6‰ and ?4.5‰, respectively, from the yields for MACR and MVK containing only 12C. For MACR and MVK generated from the OH-radical oxidation of isoprene the corresponding values were ?3.8‰ and ?2.2‰, respectively. These values indicate a significant depletion in the 13C abundance of MACR and MVK upon their formation relative to isoprene’s pre-reaction 13C/12C ratio, which is supported by theoretical interpretations of the oxidation mechanism of isoprene and its 13C-substituted isotopomers. Numerical model calculations of the isoprene + O3 reaction predicted a similar depletion in 13C for both reaction products upon production. Furthermore, the model predicts mixing ratios and stable carbon delta values for isoprene, MACR, and MVK that were in agreement with the experimental results. The combined knowledge of isotope enrichment values with KIEs will reduce uncertainties in determinations of the photochemical histories of isoprene, MACR, and MVK in the troposphere. The studies presented here were conducted with using isoprene without any artificial isotope enrichment or depletion and it is therefore very likely that these results are directly applicable to the interpretation of studies of isoprene oxidation using stable carbon isotope ratio measurements.  相似文献   

15.
16.
Carbonyl products of the gas-phase reaction of ozone with 1-alkenes   总被引:1,自引:0,他引:1  
Carbonyl products have been identified and their formation yields measured in experiments involving the gas-phase reaction of ozone with the 1-alkenes (RCH = CH 2) 3-methyl-l-butene (R = i-propyl), 4-methyl-l-pentene (R = i-butyl), 3-methyl-l-pentene (R= s-butyl), 3,3-dimethyl-l-butene (R = t-butyl) and styrene (R = C6H5) at ambient T and p = 1 atm of air. Sufficient cyclohexane was added to scavenge OH in order to minimize reactions of OH with the alkenes and with their carbonyl products. Formation yields (carbonyl formed/ozone reacted) of primary carbonyls were close to the value of 1.0 that is consistent with the mechanism: O3 + RCH = CH2 → α(HCHO + RCHOO) + (1 - α) (H2COO + RCHO), where formaldehyde and RCHO are the primary carbonyls and H2COO and RCHOO are the biradicals. Measured sums of the primary carbonyl formation yields were 1.006 ± 0.053 (1 S.D.) for formaldehyde + methylpropanal from3-methyl-l-butene(α = 0.494 ± 0.049), 1.025 ± 0.017 for formaldehyde + 2-methylbutanal from 3-methyl-l-pentene (α = 0.384 ± 0.013),1.147 ± 0.050 for formaldehyde + 3-methylbutanal from 4-methyl-l-pentene (α = 0.384 ± 0.020), 0.986 ± 0.014 for formaldehyde + 2,2-dimethylpropanal from 3,3-dimethyl-l-butene (α = 0.320 ± 0.012) and 0.980 ± 0.086 for formaldehyde + benzaldehyde from styrene (α = 0.347 ± 0.059). Carbonyls other than the primary carbonyls were identified; formation pathways are proposed that involve subsequent reactions of the monosubstituted biradicals RCHOO. Similarities and differences between branched-chain 1-alkenes and n-alkyl-substituted 1-alkenes are discussed.  相似文献   

17.
Increasing public concerns over odors and air regulations in nonattainment zones necessitate the remediation of a wide range of volatile organic compounds (VOCs) generated in the poultry-rendering industry. Currently, wet scrubbers using oxidizing chemicals such as chlorine dioxide (ClO2) are utilized to treat VOCs. However, little information is available on the kinetics of ClO2 reaction with rendering air pollutants, limiting wet scrubber design and optimization. Kinetic analysis indicated that ClO2 does not react with hexanal and 2-methylbutanal regardless of pH and temperature and implied that aldehyde removal occurs primarily via mass transfer. Contrary to the aldehydes, ethanethiol or ethyl mercaptan (a model compound for methanethiol or methyl mercaptan) and dimethyl disulfide (DMDS) rapidly reacted with ClO2. The overall reaction was found to be second and third order for ethanethiol and DMDS, respectively. Moreover, an increase in pH from 3.6 to 5.1 exponentially increased the reaction rate of ethanethiol (e.g., k2 = 25-4200 L/mol/sec from pH 3.6 to 5.1) and significantly increased the reaction rate of DMDS if increased to pH 9 (k3 = 1.4 x 10(6) L2/mol2/sec). Thus, a small increase in pH could significantly improve wet scrubber operations for removal of odor-causing compounds. However, an increase in pH did not improve aldehyde removal. The results explain why aldehyde removal efficiencies are much lower than methanethiol and DMDS in wet scrubbers using ClO2.  相似文献   

18.
Cieplik MK  Oviedo MC  Louw R 《Chemosphere》2000,40(2):195-199
The slow combustion of benzene/phenol gives rise to dibenzofuran (DBF) as major product of incomplete combustion, with negligible proportions of dibenzo-p-dioxin (DBD), or benzofuran (BF). Contrary to a recent proposal that acetylene growth reactions, e.g. BF-->DBF, are important in dioxin formation, co-combustion of benzene/phenol with acetylene--around 550 degrees C--did not alter this product pattern. Also, BF was identified as a product from degradation of DBF.  相似文献   

19.
The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured-clay system that is the confining layer for the underlying regional aquifer. Three suites of three tracers were injected into wells located 14, 24, and 24 m from a single, central extraction well. The tracers comprised noble gases (traditionally thought to be nonsorbing), alkanes (primarily water partitioning), perfluorides (primarily NAPL partitioning), and halons (both NAPL and water partitioning). Observations of vacuum response were consistent with flow in a fractured system. The halon tracers exhibited the greatest amount of retardation, and helium and the perfluoride tracers the least. The alkane tracers were unexpectedly more retarded than the perfluoride tracers, indicating low NAPL saturations and high water saturations. An NAPL saturation of 0.01, water saturation of 0.215, and gas saturation of 0.775 was estimated based on analysis of the suite of tracers comprising helium, perfluoromethylcyclohexane and dibromodifluoromethane, which was considered to be the most robust set. The estimated saturations compare reasonably well to independently determined values.  相似文献   

20.
The gas-phase reaction of bornyl acetate (1,7,7-trimethyl-bicyclo[2,2,1]-heptan-2-ol-acetate) with hydroxyl radical has been studied in a smog chamber. It was found that the reaction of bornyl acetate with OH radicals leads to organic aerosols. The chemical composition of the aerosol was studied. On the basis of mass spectral data 1,7,7-trimethyl-6-acetyloxy-bicyclo[2.2.1]-heptan-2,3-dione has been tentatively identified in irradiated CH3ONO–NO–air–bornyl acetate mixtures. The aerosol carbon yield, the fraction of the carbon initially present that is converted to aerosol, has been estimated to be ≅5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号