首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative contributions of four mechanisms of oxygen transport in multilayer composite (MLC) caps placed over oxygen-consuming mine waste were evaluated using numerical and analytical methods. MLC caps are defined here as caps consisting of earthen and geosynthetic (polymeric) components where a composite barrier layer consisting of a geomembrane (1-2 mm thick polymeric sheet) overlying a clay layer is the primary barrier to transport. The transport mechanisms that were considered are gas-phase advective transport, gas-phase diffusive transport, liquid-phase advective transport via infiltrating precipitation and liquid-phase diffusive transport. A numerical model was developed to simulate gas-phase advective-diffusive transport of oxygen through a multilayer cap containing seven layers. This model was also used to simulate oxygen diffusion in the liquid phase. An approximate analytical method was used to compute the advective flux of oxygen in the liquid phase. The numerical model was verified for limiting cases using an analytical solution. Comparisons were also made between model predictions and field data for earthen caps reported by others. Results of the analysis show that the dominant mechanism for oxygen transport through MLC caps is gas-phase diffusion. For the cases that were considered, the gas-phase diffusive flux typically comprises at least 99% of the total oxygen flux. Thus, designers of MLC caps should focus on design elements and features that will limit diffusion of gas-phase oxygen.  相似文献   

2.
Observational and numerical investigations of cumulus cloud scavenging, transport and chemical processes are presented. The experimental data set includes surface and aircraft measurements of the chemistry and microphysics of aerosol, cloud and precipitation. To help in the interpretation of these experimental data fully three-dimensional simulations of cloud chemistry and scavenging are performed. After adjusting several unmeasured model parameters, reasonable agreement could be obtained between the simulated and observed cloud chemistry and aerosol distribution in clouds. The rate at which the simulated clouds transported and transformed pollutants did not exceed a few per cent per hour.  相似文献   

3.
Addition of cloud nuclei by pollution can lead to an increase in the solar radiation reflected by clouds. The reflection of solar energy by clouds already may have been increased by the addition of man-made cloud nuclei. The albedo of a cloud is proportional to optical thickness for thin clouds, but changes more slowly with increasing thickness. The optical thickness is increased when the number of cloud nuclei is increased. Although the changes are small, the long-term effect on climate can be profound.  相似文献   

4.
In the last few decades, fire and smoke-haze occurrence increased in Indonesia by intentionally set land clearing fires and higher fire susceptibility of disturbed forests. Particularly, during El Niño years with prolonged droughts in Indonesia, land clearing fires become uncontrolled wildfires and produce large amounts of gaseous and particulate emissions. This paper investigates the influence of smoke-haze aerosols from such fires on clouds and precipitation over Indonesia during the El Niño event 1997/1998 by numerical modelling. Warm precipitation formation in both layered and convective clouds is calculated dependent on the atmospheric aerosol concentration. In the smoke-haze affected regions of Indonesia, aerosol–cloud interactions induce events with both precipitation suppression and increase compared to a reference simulation without aerosol–cloud interactions. The effect of precipitation suppression is found to dominate with about 2/3 of all precipitation modification events pointing to a prolongation of smoke-haze episodes. The corresponding convective cloud top height of shallow clouds is increased whereas distinct lower deep convective cloud top heights are found. The remaining about 1/3 events are characterised by increased precipitation and cloud liquid water content, accompanied by lower convective cloud top heights of shallow clouds and higher deep convective clouds.  相似文献   

5.
A numerical model of the feeder-seeder mechanism of orographic rain (Carruthers and Choularton, 1983) is used to describe the development of acid rain due to collection by initially ‘clean’ raindrops, falling from mid-level clouds, of cloud drops formed in low-level polluted air. The process is most efficient over hills where considerable low-level enhancement by the feeder-seeder mechanism occurs. We describe the distribution of this enhancement over hills of various sizes, the associated acidity and the deposition rate of H+ ions. The largest acid deposition rates may be very localized and more than an order of magnitude greater than other modes of deposition such as the turbulent diffusion of cloud droplets to ground.  相似文献   

6.
A brief review and assessment of field measurement programs that provide data for mixed layer diffusion research is presented. The majority of programs emphasize either the meteorological aspects of the mixed layer or plume characterization. Few programs are available that provide the complimentary blend of plume and appropriate meteorological measurements needed to adequately validate mixed layer diffusion theory. Three major U.S. EPA (Environmental Protection Agency) field programs that provide databases for model development and validation of mixed layer diffusion processes are described and discussed in more detail. The Regional Air Pollution Study (RAPS) focused on measurements of surface and mixed layer turbulent transport processes in the urban environment. The Tennessee Plume Study (TPS) obtained a database with coincident measurement of boundary layer turbulent structure and plume dispersion for a large coal-fired power plant in nonuniform terrain over the diurnal cycle. The North East Regional Oxidant Study (NEROS) obtained data on transport and dispersion of regional air mass along with supporting documentation on the spatial variations of mixed layer depths, vertical turbulent transport processes, cloud fluxes, energy budget and synoptic conditions. A design feature common throughout these experimental programs, but primarily in the RAPS and TPS, was the provision to study significant land-use scale variations and processes which influence the diffusion process. Current similarity predictions of the relevant turbulent parameters are assessed in this context. Additionally, the role of convective clouds rooted within the mixed layer in pollution dispersion as a consequence of mixed layer processes is briefly described.  相似文献   

7.
The Fracture-Matrix Transport (FMT) code couples saturated porous medium advection and diffusion with mechanistic chemical models for speciation and interphase reactions. Previous versions of FMT simulated double-porosity transport in two dimensions on the continuum from advection- to diffusion-dominated, with a user-specified velocity field to allow double-porosity transport. However, aqueous density was assumed constant, and reactive minerals were assumed to occupy negligible volume. Both of these assumptions can be considered poor for evaporite systems, where large changes in porosity and aqueous density can result from high mineral solubilities. Further development of FMT has relaxed these restrictions, allowing aqueous density to vary with phase composition, and allowing void volume to change as minerals dissolve and precipitate. This paper describes the additional mathematical complexity and code modifications required to simulate such systems. The sensitivity of advection-dominated transport to these variables is explored briefly in a one-dimensional example.  相似文献   

8.
This study deals with two-dimensional solute transport in an aquifer–aquitard system by maintaining rigorous mass conservation at the aquifer–aquitard interface. Advection, longitudinal dispersion, and transverse vertical dispersion are considered in the aquifer. Vertical advection and diffusion are considered in the aquitards. The first-type and the third-type boundary conditions are considered in the aquifer. This study differs from the commonly used averaged approximation (AA) method that treats the mass flux between the aquifer and aquitard as an averaged volumetric source/sink term in the governing equation of transport in the aquifer. Analytical solutions of concentrations in the aquitards and aquifer and mass transported between the aquifer and upper or lower aquitard are obtained in the Laplace domain, and are subsequently inverted numerically to yield results in the real time domain (the Zhan method). The breakthrough curves (BTCs) and distribution profiles in the aquifer obtained in this study are drastically different from those obtained using the AA method. Comparison of the numerical simulation using the model MT3DMS and the Zhan method indicates that the numerical result differs from that of the Zhan method for an asymmetric case when aquitard advections are at the same direction. The AA method overestimates the mass transported into the upper aquitard when an upward advection exists in the upper aquitard. The mass transported between the aquifer and the aquitard is sensitive to the aquitard Peclet number, but less sensitive to the aquitard diffusion coefficient.  相似文献   

9.
The effects of clouds (amount, type and height) on the surface UV-B radiation have been investigated at Qena, Egypt (26°17′, 32°10′, 96 m asl) using 2 years data (2004–2005) carried out by South Valley University (SVU)-meteorological research station. Thus, the characteristics of cloud's statistical property during the study period were employed to evaluate the general feature of the region of this study. However, ≈86% of all the observations were ⩽2 octas and the overcast conditions (8 octas) were very rarely over the study region (only 0.2% of all cases). These observations included 10% low-level clouds, 3.16% mid-level clouds and 7.59% high-level clouds. The dominated types of these clouds are stratocumulus (8.9%) and cirrus (5.8%).The hourly values of cloudless sky UV-B radiation (UV-B0) and consequently the cloud modification factor (CMF) were estimated. An empirical model was developed for CMF as a function of the amount of cloud at low- and mid-level and high-level clouds. The correlation coefficients were equal to 0.985 and 0.987, respectively. In addition, a general expression of the CMF for situations those are considered as the effect of different clouds was found. The efficiency of this model has been tested in combination with a cloudless sky empirical model using independent data set. For this purpose, the hourly values of UV-B at selected cloudless and cloudy days were estimated. A good agreement was observed between the measured and the predicted values of our model. The mean value of the correlation coefficients of these selected days was 0.98.In addition, the attenuation of UV-B radiation could be determined by considering low- and mid-level and high-level clouds. The reduction of UV-B radiation as a function of cloud amount was non-linear for the both cases. At cloud amount of 100%, UV-B radiation was reduced by 83% on average by the high-level clouds.  相似文献   

10.
Box model studies have been performed to study the role of aqueous phase chemistry with regard to halogen activation for marine and urban clouds and the marine aerosol as well. Different chemical pathways leading to halogen activation in diluted cloud droplets and highly concentrated sea salt aerosol particles are investigated. The concentration of halides in cloud droplets is significantly smaller than in sea-salt particles, and hence different reaction sequences control the overall chemical conversions. In diluted droplets radical chemistry involving OH, NO(3), Cl/Cl(2)(-)/ClOH(-), and Br/Br(2)(-)/BrOH(-) gains in importance and pH independent pathways lead to the release of halogens from the particle phase whereas the chemistry in aerosol particles with high electrolyte concentrations is controlled by non-radical reactions at high ionic strengths and relatively low pH values.For the simulation of halogen activation in tropospheric clouds and aqueous aerosol particles in different environments a halogen module was developed including both gas and aqueous phase processes of halogen containing species. This module is coupled to a base mechanism consisting of RACM (Regional Atmospheric Chemistry Mechanism) and the Chemical Aqueous Phase Radical Mechanism CAPRAM 2.4 (MODAC-mechanism). Phase exchange is described by the resistance model by Chemistry of Multiphase Atmospheric Systems, NATO ASI Series, 1986.It can be shown that under cloud conditions the bromine atom is mainly produced by OH initiated reactions, i.e. its concentration maximum is reached at noon. In contrast, the concentration level of chlorine atoms is linked to NO(3) radical chemistry leading to a smaller amplitude between day and night time concentrations.The contribution of radical processes to halogen atom formation in the particle phase is evident, e.g. by halogen atoms which undergo direct phase transfer. Furthermore, the application of the multiphase model for initial concentrations for sea-salt aerosols shows that the particle phase can act as a main source of halogen containing molecules (Cl(2), BrCl, Br(2)) which are photolysed in the gas phase to yield halogen atoms (about 70% of all Cl sources and more than 99% for Br).  相似文献   

11.
In this paper the meteorological processes responsible for transporting tracer during the second ETEX (European Tracer EXperiment) release are determined using the UK Met Office Unified Model (UM). The UM predicted distribution of tracer is also compared with observations from the ETEX campaign. The dominant meteorological process is a warm conveyor belt which transports large amounts of tracer away from the surface up to a height of 4 km over a 36 h period. Convection is also an important process, transporting tracer to heights of up to 8 km. Potential sources of error when using an operational numerical weather prediction model to forecast air quality are also investigated. These potential sources of error include model dynamics, model resolution and model physics. In the UM a semi-Lagrangian monotonic advection scheme is used with cubic polynomial interpolation. This can predict unrealistic negative values of tracer which are subsequently set to zero, and hence results in an overprediction of tracer concentrations. In order to conserve mass in the UM tracer simulations it was necessary to include a flux corrected transport method. Model resolution can also affect the accuracy of predicted tracer distributions. Low resolution simulations (50 km grid length) were unable to resolve a change in wind direction observed during ETEX 2, this led to an error in the transport direction and hence an error in tracer distribution. High resolution simulations (12 km grid length) captured the change in wind direction and hence produced a tracer distribution that compared better with the observations. The representation of convective mixing was found to have a large effect on the vertical transport of tracer. Turning off the convective mixing parameterisation in the UM significantly reduced the vertical transport of tracer. Finally, air quality forecasts were found to be sensitive to the timing of synoptic scale features. Errors in the position of the cold front relative to the tracer release location of only 1 h resulted in changes in the predicted tracer concentrations that were of the same order of magnitude as the absolute tracer concentrations.  相似文献   

12.
Measurements are presented on the scavenging of sulfate and nitrate by cumulus, stratus and strato-cumulus clouds. Assuming that all of the particulate sulfate was in the size range 0.1–1.0 μm radius and that sulfate was scavenged with the same efficiency as sub-micrometer particles in general, the nucleation scavenging coefficient of sulfate in these clouds was deduced to be 0.7 ±0.2 and evidence for sulfate production (1.0±0.3 μgm−3) within cloud water was also obtained. Evidence for nitrate scavenging, by nitrates serving as cloud condensation nuclei or by the absorption of HNO3 by cloud droplets, is also presented. The data suggest that either gaseous nitrogen compounds in the air other than HNO3 can dissolve and contribute to the nitrate concentration in cloud water or that nitrate can be produced within cloud droplets.  相似文献   

13.
Analytical models were developed that simulate stable isotope ratios of volatile organic compounds (VOCs) near a point source contamination in the unsaturated zone. The models describe diffusive transport of VOCs, biodegradation and source ageing. The mass transport is governed by Fick's law for diffusion. The equation for reactive transport of VOCs in the soil gas phase was solved for different source geometries and for different boundary conditions. Model results were compared to experimental data from a one-dimensional laboratory column and a radial-symmetric field experiment. The comparison yielded a satisfying agreement. The model results clearly illustrate the significant isotope fractionation by gas phase diffusion under transient state conditions. This leads to an initial depletion of heavy isotopes with increasing distance from the source. The isotope evolution of the source is governed by the combined effects of isotope fractionation due to vaporisation, diffusion and biodegradation. The net effect can lead to an enrichment or depletion of the heavy isotope in the remaining organic phase, depending on the compound and element considered. Finally, the isotope evolution of molecules migrating away from the source and undergoing degradation is governed by a combined degradation and diffusion isotope effect. This suggests that, in the unsaturated zone, the interpretation of biodegradation of VOC based on isotopic data must always be based on a model combining gas phase diffusion and degradation.  相似文献   

14.
High performance computing has made possible the development of high resolution, multidimensional, multicomponent reactive transport models that can be used to analyze complex geochemical environments. However, as increasingly complex processes are included in these models, the accuracy of the numerical formulation coupling the nonlinear processes becomes difficult to verify. Analytical solutions are not available for realistically complex problems and benchmark solutions are not generally available for specific problems. We present an advective reactive streamtube (ARS) transport technique that efficiently provides accurate solutions of nonlinear multicomponent reactive transport in nonuniform multidimensional velocity fields. These solutions can be compared with results from Eulerian-based advection-dispersion-reaction models to evaluate the accuracy of the numerical formulation used. The ARS technique includes mixed equilibrium and kinetic complexation and precipitation-dissolution reactions subject to the following assumptions: (1) transport is purely advective (i.e., no explicit diffusion or dispersion), and (2) chemistry is described by a canonical system of reactions that evolves with time and is unaffected by position in space. Results from the ARS technique are compared with results from the massively parallel, multicomponent reactive transport model MCTRACKER on a test problem involving irreversible oxidation of organic carbon and reaction of the oxidation products with two immobile mineral phases, gypsum and calcite, and fifteen aqueous complexes. Truncation error, operator splitting error, and the nonlinear transformation of these errors in the high-resolution reactive transport model are identified for this problem.  相似文献   

15.
During ETEX Meteo-France applied part of its emergency response system for critical events developped in the framework of the World Meteorological Organization environmental emergency response program. The atmospheric transport model used to forecast the evolution of a passive tracer is an eulerian model called MEDIA. In real time this model is driven by meteorological data from ARPEGE, the operational numerical weather prediction model available at the Meteo-France operation center. The overall evaluation of the results show that the model can reproduce the cloud displacement, but there exists a stretching in the transport direction. In the ATMES-II phase, the results are closer to the observations when meteorological data from the European Center for Medium range Weather Forecast are used. A simulation using analyzed meteorological data from ARPEGE every 6 h slightly improve the results comparing with the real-time experiment. All the simulations we performed reveal that the quality of the atmospheric transport model is strongly dependent on the quality of the driving numerical weather prediction model.  相似文献   

16.
The predictive potential of air quality models and thus their value in emergency management and public health support are critically dependent on the quality of their meteorological inputs. The atmospheric flow is the primary cause of the dispersion of airborne substances. The scavenging of pollutants by cloud particles and precipitation is an important sink of atmospheric pollution and subsequently determines the spatial distribution of the deposition of pollutants. The long-standing problem of the spin-up of clouds and precipitation in numerical weather prediction models limits the accuracy of the prediction of short-range dispersion and deposition from local sources. The resulting errors in the atmospheric concentration of pollutants also affect the initial conditions for the calculation of the long-range transport of these pollutants. Customary the spin-up problem is avoided by only using NWP (Numerical Weather Prediction) forecasts with a lead time greater than the spin-up time of the model. Due to the increase of uncertainty with forecast range this reduces the quality of the associated forecasts of the atmospheric flow.In this article recent improvements through diabatic initialization in the spin-up of large-scale precipitation in the Hirlam NWP model are discussed. In a synthetic example using a puff dispersion model the effect is demonstrated of these improvements on the deposition and dispersion of pollutants with a high scavenging coefficient, such as sulphur, and a low scavenging coefficient, such as cesium-137. The analysis presented in this article leads to the conclusion that, at least for situations where large-scale precipitation dominates, the improved model has a limited spin-up so that its full forecast range can be used. The implication for dispersion modeling is that the improved model is particularly useful for short-range forecasts and the calculation of local deposition. The sensitivity of the hydrological processes to proper initialization implies that the spin-up problem may reoccur with changes in the model and increased model resolution. Spin-up should be an ongoing concern for atmospheric modelers.  相似文献   

17.
Abstract

Two mathematical models of the atmospheric fate and transport of mercury (Hg), an Eulerian grid–based model and a Gaussian plume model, are used to calculate the atmospheric deposition of Hg in the vicinity (i.e., within 50 km) of five coal–fired power plants. The former is applied using two different horizontal resolutions: coarse (84 km) and fine (16.7 km). More than 96% of the power plant Hg emissions are calculated with the plume model to be transported beyond 50 km from the plants. The grid–based model predicts a lower fraction to be transported beyond 50 km: >91% with a coarse resolution and >95% with a fine resolution. The contribution of the power plant emissions to total Hg deposition within a radius of 50 km from the plants is calculated to be <8% with the plume model, <14% with the Eulerian model with a coarse resolution, and <10% with the Eulerian model with a fine resolution. The Eulerian grid–based model predicts greater local impacts than the plume model because of artificially enhanced vertical dispersion; the former predicts about twice as much Hg deposition as the latter when the area considered is commensurate with the resolution of the grid–based model. If one compares the local impacts for an area that is significantly less than the grid–based model resolution, then the grid–based model may predict lower local deposition than the plume model, because two compensating errors affect the results obtained with the grid–based model: initial dilution of the power plant emissions within one or more grid cells and enhanced vertical mixing to the ground.  相似文献   

18.
The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically based numerical model for simulation of coupled fluid flow and reactive chemical transport, including both fast and slow reactions in variably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation/dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.  相似文献   

19.
The mass flux based subgrid-scale parameterization technique of Gidel (1983, J. geophys. Res.88, 6587–6599) is re-examined for use in Eulerian long-range transport models. Specifically, the parameterization scheme is incorporated into the STEM-II Eulerian transport/transformation/removal model and the model is used to investigate pollutant transport in a nonprecipitating cumulus cloud ensemble. The effects of entrainment, detrainment, evaporation and the transport by subsidence, updrafts and turbulent diffusion are included in the analysis. Presented simulation results indicate that the parameterization is able to treat the rapid vertical transport by cloud updrafts, enables the calculation of reaction rates based on subgrid-scale concentrations, and is readily adopted by Eulerian models.  相似文献   

20.
In this paper the Elder problem is studied with the purpose of evaluating the inherent instabilities associated with the numerical solution of this problem. Our focus is first on the question of the existence of a unique numerical solution for this problem, and second on the grid density and fluid density requirements necessary for a unique numerical solution. In particular we have investigated the instability issues associated with the numerical solution of the Elder problem from the following perspectives: (i) physical instability issues associated with density differences; (ii) sensitivity of the numerical solution to idealization irregularities; and, (iii) the importance of a precise velocity field calculation and the association of this process with the grid density levels that is necessary to solve the Elder problem accurately. In the study discussed here we have used a finite element Galerkin model we have developed for solving density-dependent flow and transport problems, which will be identified as TechFlow. In our study, the numerical results of Frolkovic and de Schepper [Frolkovic, P. and H. de Schepper, 2001. Numerical modeling of convection dominated transport coupled with density-driven flow in porous media, Adv. Water Resour., 24, 63-72.] were replicated using the grid density employed in their work. We were also successful in duplicating the same result with a less dense grid but with more computational effort based on a global velocity estimation process we have adopted. Our results indicate that the global velocity estimation approach recommended by Yeh [Yeh, G.-T., 1981. On the computation of Darcian velocity and mass balance in finite element modelling of groundwater flow, Water Resour. Res., 17(5), 1529-1534.] allows the use of less dense grids while obtaining the same accuracy that can be achieved with denser grids. We have also observed that the regularity of the elements in the discretization of the solution domain does make a difference in obtaining a unique stationary solution for this problem. The results of our study also indicate that the density differences are critical in the solution of the Elder problem and that high density differences lead to the physical instability that is inherent with this problem. Other than the physical instability associated with the level of density differences used in the Elder problem, the following two points should be considered in solving the Elder problem in a consistent manner: (i) strict attention should be paid to the vertical grid Peclet number in developing the criteria for convergent grid selection; and, (ii) with a globally continuous velocity calculation stable solutions can be obtained at lower grid densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号