首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Using the set of multivariate criteria described in a companion paper, ozone-rich layers detected in tropospheric soundings are clustered according to their stratospheric or boundary layer origin. An additional class for aged tropospheric air masses is also considered. This analysis is exclusively based on the measured physical properties of the layers. The database includes 27,000 ozone profiles collected above 11 European stations—two of which provide measurements since 1970. The seasonal cycle of the tropospheric ozone stratification exhibits a clear summer maximum. This increase is due to aged tropospheric air masses that are more frequently detected, suggesting an enhanced lifetime of layers in summer. In terms of ozone content, the relative impact of stratospheric ozone compared to the other sources is highest in winter while export from the boundary layer presents a uniform seasonal cycle. Altitude and thickness distributions of the layers are consistent with the dynamical processes involved in the layering. Northernmost and southernmost stations are more exposed to stratospheric air intrusions into the free troposphere. Long-term trends show that transport from the tropopause region has increased since the mid 1980s. This trend being concomitant with lower ozone content of such layers, a moderate trend of the transport efficiency from the stratosphere on total tropospheric ozone is observed. The increase of ozone detected in tropospheric layers since the mid 1980s cannot be attributed to any recent export process from either the stratosphere or the boundary layer but rather to enhanced photochemical production in aged air masses or to an increase in the lifetime of the layers.  相似文献   

2.
In the Aguere Valley (in the oceanic boundary layer at Tenerife, 28°N, 16°W, 580 m a.s.l.) the ozone levels were monitored for ambient air quality assessment. Although precursors are emitted in this area, the strong correlation between ozone levels and wind velocity indicates that ozone is transported into the valley from the ocean. The inland ozone supply along the valley is induced by an orographic channelling effect of the northern oceanic air masses. The highest ozone concentrations are mostly recorded during the nocturnal stage under the influence of fresh oceanic air masses, and during high wind speed events. The seasonal cycle is characterised by elevated ozone mixing ratios in the spring (nighttime levels >45 ppbv) and low mixing ratios in the summer (nighttime levels in the range 20–35 ppbv). Back-trajectory analysis shows that the ozone monitored in the Aguere Valley is associated with long-range transport processes. High ozone events in the spring are associated with transport from upper tropospheric levels, both over the North Atlantic-high latitudes (>45°N) and Europe. This downward transport was observed in the western edge of upper tropospheric cyclones, which suggests that the upper tropospheric/low stratospheric ozone sources play a significant role. In summer, ozone is mainly transported from the North Atlantic-high latitudes (>45°N) and from mid- to low-tropospheric levels. In autumn and winter, the high ozone concentrations are transported from sources located a few km above the North Atlantic-high latitudes (>45°N) and over Europe. The Central-North Atlantic (<45°N) and North Africa are not significant sources of ozone. The high spring and lower summer ozone events in the Aguere Valley agree with other North Atlantic ozone observation in the oceanic boundary layer. However, this behaviour contrasts with the high ozone events frequently recorded at Izaña BAPMoN station (located in the free troposphere in Tenerife) during the summer, which have been attributed in the literature to downward transport from upper levels. An intensification of the inversion layer that separates the oceanic boundary layer of the free troposphere during the summer in Canary Islands is interpreted as the cause of this different behaviour between ozone in the Aguere Valley and Izaña BAPMoN station.  相似文献   

3.
4.
Ozone profiles are often used to investigate day-to-day and year-to-year variability in origins of free tropospheric ozone. With this in mind, more than 50 ozonesonde launches were conducted in Beltsville, MD, during the summers of 2004 through 2007. Budgets of free tropospheric ozone were calculated for each ozone profile in the four summers using a laminar identification (LID) method and unusual episodes were analyzed with respect to meteorological variables. The laminar method showed that stratosphere-to-troposphere transport (ST) accounted for greater than 50% of the free tropospheric ozone column on 17% of days sampled, a more pronounced influence than regional convective and lightning (RCL) sources. The ST origins were confirmed with trajectories, and tracers (water vapor and potential vorticity). The amount of free tropospheric ozone from ST and RCL sources varied from year-to-year (up to 13%) and can be explained by differences in mean meteorological patterns. On average, almost 30% of the free tropospheric column was attributed to ST influence, about twice as much as RCL, although the LID method may not capture weeks-old lightning influences as in a chemical model. The prevalence of ST ozone in summertime Beltsville soundings was similar to six sounding sites in the IONS-04 campaign [Thompson, A.M., et al., 2007b. Intercontinental Transport Experiment Ozonesonde Network Study (IONS, 2004): 1. Summertime upper tropospheric/lower stratosphere ozone over northeastern North America. J. Geophys. Res. 112, D12S12; Thompson, A.M., et al., 2007c. Intercontinental Transport Experiment Ozonesonde Network Study (IONS, 2004): 2. Tropospheric ozone budgets and variability over northeastern North America. J. Geophys. Res. 112, D12S13.] and to statistics from a 30 year climatology of European soundings [Collette, A., Ancellet, G., 2005. Impact of vertical transport processes on the tropospheric ozone layering above Europe. Part II: Climatological analysis of the past 30 years. Atmos. Environ. 39, 5423–5435]. The Beltsville record also demonstrated the value of soundings for air quality forecasting in an urban area. The 22 nighttime soundings collected over Beltsville in 2004–2007 can be divided into distinct polluted and unpolluted subsets, the former 20 ppbv higher in residual layer ozone (1 km) than the latter. These distinctions propagated to daytime differences of 10 ppbv at the surface in the Washington, DC, area, with the high-ozone residual layers leading to non-attainment of the National Ambient Air Quality Standard for ozone. More frequent ozone observations aloft appear essential for better understanding ozone variability and for enabling air quality modelers to achieve more accurate ozone forecasts.  相似文献   

5.
Multivariate analyses (MA) are applied to discriminate air masses near the extra-tropical tropopause in a north Atlantic cut-off low (COL) case, using the Measurement of OZone and water vapour by five Airbus In-service airCraft data. Different MA, such as hierarchical clustering methods (HCM) and K-means clustering and the linear and quadratic discriminant analyses are tested and compared. The resulting methodology is based on the successive use of the principal component analysis, HCM with average linkage and K-means clustering, and finally the linear discriminant analysis. It is found that these tools result in a much better discrimination between air masses than the classical selection criteria. From a study based on data selected during seven isobaric flights (230 hPa) crossing the same COL in June 1995, the MA method allows to obtain the physical and chemical structure of the COL and surrounding air masses, and the identification of air mass directly linked to the stratosphere–troposphere exchanges (STE). This air mass corresponds to a mixed zone between stratosphere and troposphere near the jet stream, with intermediate values and weak gradients of ozone, potential temperature and humidity (the tropopause is poorly defined). These STE air masses could not have been found objectively with classical discrimination criteria. A possible hypothesis to explain these STE is the dynamics associated with strong convection beneath and around the southern side of the COL.  相似文献   

6.
Abnormally low ozone (O3) mixing ratios were observed by electrochemical concentration cell (ECC) ozonesondes in the upper troposphere over subtropical East Asia in spring 2004, a season when high tropospheric O3 is usually observed in the region. Low O3 with a lowest mixing ratio of 13 ppbv, less than a fourth of the respective seasonal average of 60–100 ppbv, was observed at 11–18 km above ground over Hong Kong (22.31°N, 114.17°E), Sanya (18.23°N, 109.52°E) and Taipei (24.98°N, 121.43°E). The origin of the low O3 was investigated using meteorological evidence, satellite imagery and three-dimensional backward air trajectory. We found for the first time that the low O3 resulted from deep convective pumping of low O3 maritime air masses near the center of typhoon Sudal from the boundary layer of the tropical region to the east of the Philippines to the upper troposphere. The low O3 air masses were then transported to the higher latitudes far ahead of the typhoon following the long-range transport driven by the circulations associated with the typhoon and the northern Hadley cell. The findings of this study highlight that more research efforts are needed to understand the effect of the circulation associated with tropical cyclones on the distribution and budget of O3 and other trace gases in the troposphere.  相似文献   

7.
The natural background in the ozone concentration at rural locations in the United States and western Europe has been estimated by use of several approaches. The approaches utilized include the following: (1) historical trends in ozone concentration measurements, (2) recent ozone measurements at remote sites, (3) use of tracers of air originating in the stratosphere or upper troposphere and (4) results from applications of tropospheric photochemical models. While each of these approaches has its own limitations it appears that the natural background of ozone during the warmer months of the year is in the range of 10 to 20 ppb. Most of the ozone originating in the lower stratosphere or upper troposphere is lost by chemical or physical removal processes as well as undergoing dilution by air in the lower troposphere before reaching ground level rural locations. Lower tropospheric photochemical processes, those below 5 km, are likely to account for most of the ozone measured at rural locations during the warmer months of the year.

A key aspect to improved quantitation of the contributions from lower tropospheric photochemical processes to ozone concentrations continues to be more extensive atmospheric measurements of the distribution of reactive species of nitrogen. The emission densities of anthropogenic sources of NOx are known to be highly variable over populated areas of continents as well as between continental areas and the oceans. The emission densities of biogenic sources of NOx are small, likely to be highly variable, but poorly quantitated. These wide variations indicate the need for use of three dimensional tropospheric photochemical models over large continental regions.

Available results do indicate higher efficiencies for ozone formation at lower NOx concentrations, especially below 1 ppb.  相似文献   

8.
Understanding the human health impacts of ground level ozone requires detailed knowledge of its spatial–temporal distribution beyond that provided by surface monitoring networks. Here, a novel methodology based on unsupervised multivariate statistical techniques has been developed and used to identify the transport and dispersion patterns of tropospheric ozone. The hierarchical clustering method is used to visualize air flow patterns at two time scales relevant for ozone buildup. Sequentially executed statistical methods consider hourly 1-h surface wind field measurements. First, clustering is performed at the hourly time scale to identify 1-h surface flow patterns. Then, sequencing is performed at the daily time scale to identify groups of days sharing similar diurnal cycles for the surface flow. Selection of appropriate numbers of air flow patterns allows inference of regional transport and dispersion patterns for understanding population exposure to ozone. The methods are applied to the Houston, Galveston, and Beaumont-Port Arthur, TX study domain. Representative hourly wind field patterns are determined for the entire 2004 ozone season. Then, sequencing is performed for the 32 days in exceedance of the NAAQS for 8-h ozone. Four diurnal flow patterns capturing different ozone exceedance scenarios are isolated; each scenario is associated with a distinct spatial distribution for atmospheric pollutants.  相似文献   

9.
Abstract

The main results of an experimental study focusing on the formation and transport of photochemical pollution in the Madrid air basin are presented. This southern European, heavily populated urban area is located on an elevated plateau at a height of 700 m, near a mountain range with maximum heights of around 2,400 m. Daily and seasonal cycles of ozone were documented during a one-year survey at three semi-rural sites located 30 km away from the urban center. Maximum hourly values of up to 140 ppb were measured, and the ozone generated within the urban plume on polluted days (when values exceeded 90 ppb) has been estimated at around 40-50 ppb.A meteorological characterization of these smoggy days pointed out the influence of thermally induced local wind flows on the concentration daily cycles at the measuring sites, denoting a preferred advection of the urban plume. Moreover, during intensive summer field campaigns, the use of meteorological and ozone sondes, as well as an instrumented aircraft, revealed some features about the horizontal and vertical distribution of the polluted air masses, as well as their evolution within the planetary boundary layer. Ozone plumes have been detected up to 100 km away from the city, usually mixed in a layer that reaches a height of 1,000-1,500 m in the afternoon. On some occasions, ozone-enriched layers have been detected as high as 4,000 m during morning hours, suggesting possible tropospheric injection induced by topographydriven flows or convective mesoscale systems that are usually present in the center of the Iberian Peninsula in the summer.  相似文献   

10.
The main purpose of this study was to evaluate the contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area (Portugal) since the 19th century. The study was based on pre-industrial and recent data series, the results being analyzed according to the atmospheric chemistry. The treatment of ozone and meteorological data was performed by classical statistics and by time-series analysis. It was concluded that in the 19th century the ozone present in the troposphere was not of photochemical origin, being possible to consider the respective concentrations as reference values. For recent data a cycle of 8h for ozone concentrations could be related to traffic. Compared to the 19th century, the current concentrations were 147% higher (252% higher in May) due to the increased photochemical production associated with the increased anthropogenic emissions.  相似文献   

11.
Physical properties, particle size distribution and chemical composition of the Arctic aerosol aloft have been studied to assess the origin of polluted layers of the Arctic air. Four measurement campaigns were made with the NILU aircraft during the period March 1983–JuIy 1984. Evidence of very long range transport of air masses to the Arctic is presented for summer and winter conditions. These polluted air masses are observed at higher altitudes (> 1.5 km). The layers of polluted air at lower altitudes are believed to be due to episodes of air mass transport from emission areas with a temperature similar to that in the Arctic in winter, and from local sources in summer. However, further aircraft measurements are needed to support these preliminary results.  相似文献   

12.
The ambient air quality monitoring data of 2006 and 2007 from a recently established Pearl River Delta (PRD) regional air quality monitoring network are analyzed to investigate the characteristics of ground-level ozone in the region. Four sites covering urban, suburban, rural and coastal areas are selected as representatives for detailed analysis in this paper. The results show that there are distinct seasonal and diurnal cycles in ground-level ozone across the PRD region. Low ozone concentrations are generally observed in summer, while high O3 levels are typically found in autumn. The O3 diurnal variations in the urban areas are larger than those at the rural sites. The O3 concentrations showed no statistically significant difference between weekend and weekdays in contrast to the findings in many other urban areas in the world. The average ozone concentrations are lower in urban areas compared to the sites outside urban centers. Back trajectories are used to show the major air-mass transport patterns and to examine the changes in ozone from the respective upwind sites to a site in the center of the PRD (Wanqingsha). The results show higher average ozone concentrations at the upwind sites in the continental and coastal air masses, but higher 1 h-max O3 concentrations (by 8–16 ppbv) at the center PRD site under each of air-mass category, suggesting that the ozone pollution in the PRD region exhibits both regional and super-regional characteristics.  相似文献   

13.
Ground-based observations of ozone have been performed at three sites in northern Fennoscandia, Karasjok, Esrange and Pallas. The sites are located in remote, unpolluted areas far away from the European source regions, and thus representing the northern hemispheric background. Events of photochemical episodes are rare. However, on 19 and 20 April 2003 two episodes with unusually high ozone values were measured at these stations. The highest values of 85.4 and 83.5 ppbv were observed at Esrange and Pallas, respectively, on the 20th April. A simultaneous increase of other pollutants, e.g. nitrate, supports the idea that this was an anthropogenic episode to the far north. A third episode was seen on the 21st at Esrange and Pallas but not at Karasjok.Results from a source–receptor analysis with the particle dispersion model FLEXPART show southern continental Europe as the main source of the polluted air masses in connection with the enhanced ozone, whereas in between transport of cleaner air masses from the North-Atlantic took place. The highest ozone peaks measured at Esrange and Pallas can most likely be traced back to transport of pollution from the Iberian peninsula superimposed on pollution transported from the Northern Mediterranean.  相似文献   

14.
In order to contribute to current knowledge of ozone concentrations and transport across the Central Massif, a monitoring station was installed at 1780 m on the upper Spanish plateau about 55 km from the city of Madrid. Ozone concentrations and standard meteorological variables were measured in June and July 2002. A smoothed ozone hourly cycle was obtained with mean values of 120 and 110 microgm(-3) during day-time and night-time, respectively. The highest ozone concentrations were recorded in the SE-S-SW wind sectors, proving the influence of transport from the Madrid urban plume to the upper plateau. This assumption was also supported by the satisfactory correlation between ozone peaks obtained at the monitoring site and those recorded in a representative station on the foothill located on the lower plateau during episodic situations. To assess the contribution of long-range transport, backward air mass trajectories were computed each day of measurements at 820 hPa. The lowest ozone mean was linked to Atlantic Ocean air masses, and the highest to air masses from Central Europe.  相似文献   

15.
High ozone concentrations, often in excess of the national ambient air quality standard for photochemical oxidants, have been measured simultaneously in urban and rural areas of New York State. Average daily rural ozone concentrations were found to correlate well with daily maximum urban ozone concentrations suggesting a common source. Estimations of the quantity of ozone advectively transported into New York State are more than an order of magnitude greater than estimations of the potential photochemical generation of ozone from hydrocarbon emissions within New York State. It is suggested thai the high rural ozone levels are not primarily due to the transport of ozone and ozone precursors from olher urban areas, but are rather due to natural phenomena such as photochemical generation from naturally occurring precursors or transport of ozone from the stratosphere to the troposphere. The effectiveness of a hydrocarbon control strategy for New York State to meet the ambient air quality standard for photochemical oxidants when background levels themselves may be above the standard is questioned.  相似文献   

16.
Using a trajectory climatology for the period 1992–2001 we have examined how seasonal changes in transport cause changes in the concentrations of tropospheric ozone (O3), gaseous elemental mercury (GEM) and non-methane hydrocarbons (NMHCs) observed at the Mt. Zeppelin station, Ny-Ålesund (78.9°N, 11.9°E). During April–June O3 depletion events were frequently observed in connection with air transport across the Arctic Basin. The O3 loss was most pronounced in air masses advected close to the surface. This result supports the idea that the O3 depletion reactions take place in the lowermost part of the atmosphere in the central Arctic Basin. A strong positive correlation between springtime O3 depletion events and the oxidation of GEM to divalent mercury was found. During air mass advection from Siberia, the Barents Sea and the Norwegian Sea the strongest correlation was observed during April–May, whereas air masses originating from the Canadian Arctic and the central Arctic areas showed the highest O3–GEM correlation in May–June. We suggest that this 1-month lag could either be due to the position of the marginal ice zone or temperature differences between the northwestern and northeastern air masses. In connection with springtime O3 depletion events low concentrations of some NMHCs, especially ethane and ethyne, were observed, indicating that both bromine (ethyne oxidant) and chlorine radicals (ethane oxidant) are present in the Arctic atmosphere during spring. In winter, negative correlations between O3 and NMHCs were found in connection with air transport from Europe and Siberia, which we interpret as O3 destruction taking place in industrially contaminated plumes.  相似文献   

17.
The possibility of a long term evolution for tropospheric ozone, connected to a rise of anthropogenic releases, raises the question of a human climatic action. In order to bring an experimental confirmation to photochemical theories, continuous CO and O3 measurements were started in November at the Pic du Midi observatory (3000 m altitude in the Pyrenean range). The results obtained confirm the photochemical hypothesis about the ozone origin. An ozone maximum is found in summer, corresponding to a CO minimum, which agrees with the increase of the u.v. flux. The seasonal variation does not exceed 19% of the value integrated over the year, which limits to 20% the maximal stratospheric contribution. The standard diurnal variations show the existence of a variable lag (0–4 h) between the O3 minimum and the CO maximum, which is interpreted as showing a photochemical O3 formation in the afternoon in the air coming from the lower layers.  相似文献   

18.
The temporal and spatial distributions of boundary-layer ozone were studied during June 2000 at Summit, Greenland, using surface-level measurements and vertical profiling from a tethered balloon platform. Three weeks of continuous ozone surface data, 133 meteorological vertical profile data and 82 ozone vertical profile data sets were collected from the surface to a maximum altitude of 1400 m above ground.The lower atmosphere at Summit was characterized by the prevalence of strong stable conditions with strong surface temperature inversions. These inversions reversed to neutral to slightly unstable conditions between ∼9.00 and 18.00 h local time with the formation of shallow mixing heights of ∼70–250 m above the surface.The surface ozone mixing ratio ranged from 39 to 68 ppbv and occasionally had rapid changes of up to 20 ppb in 12 h. The diurnal mean ozone mixing ratio showed diurnal trends indicating meteorological and photochemical controls of surface ozone. Vertical profiles were within the range of 37–76 ppb and showed strong stratification in the lower troposphere. A high correlation of high ozone/low water vapor air masses indicated the transport of high tropospheric/low stratospheric air into the lower boundary layer. A ∼0.1–3 ppb decline of the ozone mixing ratio towards the surface was frequently observed within the neutrally stable mixed layer during midday hours. These data suggest that the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by photochemical processes and/or transport phenomena that follow diurnal dependencies. With 37 ppb of ozone being the lowest mixing ratio measured in all data no evidence was seen for the occurrence of ozone depletion episodes similar to those that have been reported within the boundary layer at coastal Arctic sites during springtime.  相似文献   

19.
Causes for the unusually high and seasonally anomalous ozone concentrations at Summit, Greenland were investigated. Surface data from continuous monitoring, ozone sonde data, tethered balloon vertical profiling data, correlation of ozone with the radionuclide tracers 7Be and 210Pb, and synoptic transport analysis were used to identify processes that contribute to sources and sinks of ozone at Summit. Northern Hemisphere (NH) lower free troposphere ozone mixing ratios in the polar regions are ∼20 ppbv higher than in Antarctica. Ozone at Summit, which is at 3212 m above sea level, reflects its altitude location in the lower free troposphere. Transport events that bring high ozone and dry air, likely from lower stratospheric/higher tropospheric origin, were observed ∼40% of time during June 2000. Comparison of ozone enhancements with radionuclide tracer records shows a year-round correlation of ozone with the stratospheric tracer 7Be. Summit lacks the episodic, sunrise ozone depletion events, which were found to reduce the annual, median ozone at NH coastal sites by up to ∼3 ppbv. Synoptic trajectory analyses indicated that, under selected conditions, Summit encounters polluted continental air with increased ozone from central and western Europe. Low ozone surface deposition fluxes over long distances upwind of Summit reduce ozone deposition losses in comparison to other NH sites, particularly during the summer months. Surface-layer photochemical ozone production does not appear to have a noticeable influence on Summit's ozone levels.  相似文献   

20.
The contribution of ZAMG to MONAROP consists of special weather forecasts to control the SOCs sampling procedure and of the analysis of the specific transport processes for SOCs, which is still in progress.In this paper, air pollutant transport into the Alps is demonstrated by examples of inorganic pollutants: Measurements of NOx and ozone provide evidence for air pollutant transport by local wind systems (valley and slope winds), especially at low elevated sites of the Alps. In addition, trajectory analyses for the high elevation sites demonstrate the importance of large scale synoptic air pollutant transport. The effects of these transport processes with different spatial and temporal scales are governed by the physical and chemical properties of the particular pollutant.First results for the high alpine MONARPOP stations show that air masses from east Europe influence mostly Sonnblick (Austria), whereas the influence of the Po basin is strongest at Weissfluhjoch (Switzerland).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号