首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The main purpose of this study is to evaluate the photochemical pollution over the Metropolitan Area of Porto Alegre (MAPA), Brazil, where high concentrations of ozone have been registered during the past years. Due to the restricted spatial coverage of the monitoring air quality network, a numerical modelling technique was selected and applied to this assessment exercise. Two different chemistry-transport models – CAMx and CALGRID – were applied for a summer period, driven by the MM5 meteorological model. The meteorological model performance was evaluated comparing its results to available monitoring data measured at the Porto Alegre airport. Validation results point out a good model performance. It was not possible to evaluate the chemistry models performance due to the lack of adequate monitoring data. Nevertheless, the model intercomparison between CAMx and CALGRID shows a similar behaviour in what concerns the simulation of nitrogen dioxide, but some discrepancies concerning ozone. Regarding the fulfilment of the Brazilian air quality targets, the simulated ozone concentrations surpass the legislated value in specific periods, mainly outside the urban area of Porto Alegre. The ozone formation is influenced by the emission of pollutants that act as precursors (like the nitrogen oxides emitted at Porto Alegre urban area and coming from a large refinery complex) and by the meteorological conditions.  相似文献   

2.
Each summer period extremely high ozone levels are registered at the rural background station of Lamas d'Olo, located in the Northeast of Portugal. In average, 30% of the total alert threshold registered in Portugal is detected at this site. The main purpose of this study is to characterize the atmospheric conditions that lead to the ozone-rich episodes at this site. Synoptic patterns anomalies and back trajectories cluster analysis were performed, for the period between 2004 and 2007, considering 76 days when ozone maximum hourly concentrations were above 200 μg m?3. The obtained atmospheric anomaly fields suggested that a positive temperature anomaly is visible above the Iberian Peninsula. A strong wind flow pattern from NE is observable in the North of Portugal and Galicia, in Spain. These two features may lead to an enhancement of the photochemical production and to the transport of pollutants from Spain to Portugal. In addition, the 3D mean back trajectories associated to the ozone episode days were analysed. A clustering method has been applied to the obtained back trajectories. Four main clusters of ozone-rich episodes were identified, with different frequencies of occurrence: north-westerly flows (11%); north-easterly flows (45%), southern flow (4%) and westerly flows (40%). Both analyses highlight the NE flow as a dominant pattern over the North of Portugal during summer. The analysis of the ozone concentrations for each selected cluster indicates that this northeast circulation pattern, together with the southern flow, are responsible for the highest ozone peak episodes. This also suggests that long-range transport of atmospheric pollutants is the main contributor to the ozone levels registered at Lamas d'Olo. This is also highlighted by the correlation of the ozone time-series with the meteorological parameters analysed in the frequency domain.  相似文献   

3.
Khoder MI 《Chemosphere》2002,49(6):675-684
Sulfur dioxide, nitrogen dioxide, particulate sulfate and nitrate, gaseous nitric acid, ozone and meteorological parameters (temperature and relative humidity) were measured during the winter season (1999-2000) and summer season (2000) in an urban area (Dokki, Giza, Egypt). The average particulate nitrate concentrations were 6.20 and 9.80 microg m(-3), while the average gaseous nitric acid concentrations were 1.14 and 6.70 microg m(-3) in the winter and summer seasons, respectively. The average sulfate concentrations were 15.32 microg m(-3) during the winter and 25.10 microg m(-3) during the summer season. The highest average concentration ratio of gaseous nitric acid to total nitrate was found during the summer season. Particulate sulfate and nitrate and gaseous nitric acid concentrations were relatively higher in the daytime than those in the nighttime. Sulfur conversion ratio (Fs) and nitrogen conversion ratio (Fn) defined in the text were calculated from the field measurement data. Sulfur conversion ratio (Fs) and nitrogen conversion ratio (Fn) in the summer were about 2.22 and 2.97 times higher than those in the winter season, respectively. Moreover, sulfur conversion ratio (Fs) and nitrogen conversion ratio (Fn) were higher in the daytime than those in the nighttime during the both seasons. The sulfur conversion ratio (Fs) increases with increasing ozone concentration and relative humidity. This indicates that the droplet phase reactions and gas phase reactions are important for the oxidation of SO2 to sulfate. Moreover, the nitrogen conversion ratio (Fn) increases with increasing ozone concentration, and the gas phase reactions are important and predominant for the oxidation of NO2 to nitrate.  相似文献   

4.
Ground level ozone represents a significant air quality concern in Toronto, Canada, where the national 65 ppb 8-h standard is repeatedly exceeded during the summer. Here we present an analysis of nitrogen dioxide (NO2), ozone (O3), and volatile organic compound (VOC) data from federal and provincial governmental monitoring sites from 2000 to 2007. We show that summertime VOC reactivity and ambient concentrations of NO2 have decreased over this period of time by up to 40% across Toronto and the surrounding region. This has not resulted in significant summertime ozone reductions, and in some urban areas, it appears to be increasing. We discuss the competing effects of decreased ozone titration leading to an increase in O3, and decreased local ozone production, both caused by significant decreases in NOx concentrations. In addition, by using local meteorological data, we show that annual variability in summer ozone correlates strongly with maximum daily temperatures, and we explore the effect of atmospheric transport from the southwest which has a significant influence on early morning levels before local production begins. A mathematical model of instantaneous ozone production is presented which suggests that, given the observed decreases in NOx and VOC reactivity, we would not expect a significant change in local ozone production under photochemically relevant conditions. These results are discussed in the context of Toronto's recent commitment to cutting local smog-causing pollutants by 20% by 2012.  相似文献   

5.
The impact of biogenic volatile organic compound (BVOC) emissions on European ozone distributions has not yet been evaluated in a comprehensive way. Using the CHIMERE chemistry-transport model the variability of surface ozone levels from April to September for 4 years (1997, 2000, 2001, 2003) resulting from biogenic emissions is investigated. It is shown that BVOC emissions increased on average summer daily ozone maxima over Europe by 2.5 ppbv (5%). The impact is most significant in Portugal (up to 15 ppbv) and in the Mediterranean region (about 5 ppbv), being smaller in the northern part of Europe (1.3 ppbv north of 47.5°N). The average impact is rather similar for the three summers (1997, 2000, 2001), but is much larger during the extraordinarily hot summer of 2003. Here, the biogenic contribution to surface ozone doubles compared to other years at some locations. Interaction with anthropogenic NOx emissions is found to be a key process for ozone production of biogenic precursors. Comparing the impact of the state-of-the-art BVOC emission inventory compiled within the NatAir project and an earlier, widely used BVOC inventory derived from Simpson et al. [1999. Inventorying emissions from nature in Europe. Journal of Geophysical Research 104(D7), 8113–8152] on surface ozone shows that ozone produced from biogenic precursors is less in central and northern Europe but in certain southern areas much higher e.g. Iberian Peninsula and the Mediterranean Sea. The uncertainty in the regionally averaged impact of BVOC on ozone build-up in Europe is estimated to be ±50%.  相似文献   

6.
The local and regional distribution of pollutants is significantly influenced by weather patterns and variability along with the spatial patterns of emissions. Therefore, climatic changes which affect local meteorological conditions can alter air quality. We use the regional air quality model CHIMERE driven by meteorological fields from regional climate change simulations to investigate changes in summer ozone mixing ratios over Europe under increased greenhouse gas (GHG) forcing. Using three 30-year simulation periods, we find that daily peak ozone amounts as well as average ozone concentrations substantially increase during summer in future climate conditions. This is mostly due to higher temperatures and reduced cloudiness and precipitation over Europe and it leads to a higher number of ozone events exceeding information and warning thresholds. Our results show a pronounced regional variability, with the largest effects of climate change on ozone concentrations occurring over England, Belgium, Germany and France. The temperature-driven increase in biogenic emissions appears to enhance the ozone production and isoprene was identified as the most important chemical factor in the ozone sensitivity. We also find that summer ozone levels in future climate projections are similar to those found during the exceptionally warm and dry European summer of 2003. Our simulations suggest that in future climate conditions summer ozone might pose a much more serious threat to human health, agriculture and natural ecosystems in Europe, so that the effects of climate trends on pollutant amounts should be considered in future emission control measures.  相似文献   

7.
This study focuses on synoptic-scale transport of ozone as it affects Southern Ontario. This process has been analyzed for the summer in 2001, as an example period of a frequent event that usually occurs during summer in this region. The work was carried out using the mesoscale modeling system generation 5 (MM5)/sparse matrix operator kernel emission modeling system (SMOKE)/community multiscale air quality (CMAQ) regional air quality modeling system, together with observational data from monitoring stations located throughout the modeling domain. Other different analyses have been carried out to supply more information apart from that obtained by the modeling system. A back-trajectory cluster methodology was used to evaluate the magnitude of the effects studied and an analysis of wind direction and cloud cover revealed a significant correlation with ozone concentration (R2=0.5–0.6). Synoptic sea-surface level pressure (SLP) patterns were also analyzed to examine other meteorological aspects. The contribution of natural background ozone to the total amount within the region was compared with that from synoptic-scale transport. The influence of emission of pollutants from selected areas on ozone concentrations in Southern Ontario was also analyzed. As relevant results of these analyses, the model predicts that background ozone is the largest contribution to the ground-level ozone concentration during days in which low values were recorded. However, when smog episodes occurred, the model predicts that around 60% of the ozone formed by anthropogenic emissions of pollutants is due to releases from nearby US states.  相似文献   

8.
An enhanced ozone forecasting model using nonlinear regression and an air mass trajectory parameter has been developed and field tested. The model performed significantly better in predicting daily maximum 1-h ozone concentrations during a five-year model calibration period (1993–1997) than did a previously reported regression model. This was particularly true on the 28 “high ozone” days ([O3]>120 ppb) during the period, for which the mean absolute error (MAE) improved from 21.7 to 12.1 ppb. On the 77 days meteorologically conducive to high ozone, the MAE improved from 12.2 to 9.1 ppb, and for all 580 calibration days the MAE improved from 9.5 to 8.35 ppb. The model was field-tested during the 1998 ozone season, and performed about as expected. Using actual meteorological data as input for the ozone predictions, the MAE for the season was 11.0 ppb. For the daily ozone forecasts, which used meteorological forecast data as input, the MAE was 13.4 ppb. The high ozone days were all anticipated by the ozone forecasters when the model was used for next day forecasts.  相似文献   

9.
The establishment of element balances for ecosystems presupposes a knowledge of the amounts of the respective element exchanged between the ecosystem and the atmosphere near the ground by determining their vertical flux densities. Any adequate approach to calculate flux densities of gaseous species in the atmosphere has to use micrometeorological techniques. The authors applied the ratiometric method, which is described in detail. Results of flux density calculations for sulfur dioxide, nitrogen dioxide, nitric oxide and ammonia obtained during two years of measurement are discussed with regard to their role in element balances. Flux densities and deposition velocities of ozone are interpreted as functions of meteorological parameters as well as of the biological activity of the canopy. The latter is characterized by the flux density and flux-to-concentration ratio of carbon dioxide.  相似文献   

10.
Benzene, toluene, sulphur dioxide, ozone and nitrogen dioxide were measured at a mean level of 13.5 m above ground in a narrow, four-lane street canyon (height 30 m, width 20 m) in Thessaloniki, Greece during the period January–July 1997 by means of a commercial differential optical absorption spectrometer (OPSIS DOAS). Primary pollutant levels were found to be 2.5–4.4 times higher during the cold part of the year than during the warm part of the year, the winter/summer ratio increasing with the reaction rate constant with OH for each of the measured species. Ozone, on the other hand, exhibited a winter/summer ratio of 0.36. NO2 originates from both primary and secondary sources; its winter/summer concentration ratio of 1.4 lies, therefore, between those of primary pollutants and ozone. Pollution levels were influenced considerably by wind speed, while for the street canyon under study wind direction did not influence pollutant levels considerably. While primary pollution was found to decrease with increasing wind speed, ozone increased. Benzene mean levels during the study period were around 6 ppb and hence much higher than the EU annual limit value of 5 μg m−3 (1.44 ppb at STP). Toluene mean levels were around 14 ppb and hence also several times above the WHO recommendation of 2 ppb for 24 h. The apportionment of traffic emissions in four time zones used in most inventories in urban airshed models was tested using benzene and toluene measurements at low (<1 m s−1) wind speeds. The agreement between model emissions and calculated emissions apportionment into the four time zones was good, except for Zone D (23:00–1:59), where model inventory emissions were somewhat too low.  相似文献   

11.
INTENTION, GOAL, SCOPE, BACKGROUND: Photochemical pollution is a very complex process involving meteorological, topographic, emission and chemical parameters. The most important chemical mechanisms involved in the atmospheric process have already been identified and studied. However, many unknown parameters still exist because of the large number of participating chemical reactions. OBJECTIVE: The present study investigates the processes involved in the photochemical pollution effect of an urban station located in the greater area of the Athens basin and gives a plausible explanation for the different seasonal ozone development between that station and another rural one. Furthermore, the distribution of the mean monthly surface ozone observed at the urban station during 1987-2001 is examined in order to create a relevant forecasting tool. METHODS: Averaged hourly data of O3 and NOx observations monitored at the above mentioned stations, during 1987-2001, have been used in order to derive the daytime (7:00-15:00) values. Trajectories calculated by using a 2D-trajectory code and meteorological data, during the period 1988-1996, have also been used. RESULTS AND DISCUSSION: At the urban station, the percentage negative trend of NO and NOx data in winter and summer is higher than that in spring and autumn, while the percentage ozone trend is maximum in the summer. On the contrary, the negative surface ozone trend at the rural station exhibits a minimum in summer and a maximum in autumn and winter. The mean seasonal wind-rose for the selected months shows that the northward wind flow dominates during June, the month of the lowest negative ozone trend in the rural station. Finally, the development of the forecasting tool shows that the mean monthly surface ozone data during the period (1987-2001) demonstrates a semi-log distribution. CONCLUSIONS: Air transport effect on the air pollution of the rural station (not blocked by mountains) is deduced as a possible reason for the different seasonal ozone development observed between the rural and the urban station. Finally, the discrepancies between the theoretical probabilities deduced by the model and the empirical ones appear to be very small, and the corresponding correlation coefficient is 0.99. RECOMMENDATION AND OUTLOOK: However, to interpret the aforementioned statistical results about the negative trends in ozone and its precursors, additional parameters can be taken into account. Changes in NOx concentrations, for instance, can result not only from changes in emissions or meteorological conditions. There might also be a contribution through changes in the atmospheric composition. A study of the contribution of changes in atmospheric composition to trends of observed NOx concentrations requires that a series of steps be taken (removal of meteorological influence in the time series, calculation of trends in OH concentrations, etc.).  相似文献   

12.
13.
Particulate matter (PM) and aerosols have became a critical pollutant and object of several research applications, due to their increasing levels, especially in urban areas, causing air pollution problems and thus effects on human health. The main purpose of this study is to perform a first long-term air quality assessment for Portugal, regarding aerosols and PM pollution. The CHIMERE chemistry-transport model, forced by the MM5 meteorological fields, was applied over Portugal for 2001 year, with 10 km horizontal resolution, using an emission inventory obtained from a spatial top-down disaggregation of the 2001 national inventory database. The evaluation model exercise shows a model trend to overestimate particulate pollution episodes (peaks) at urban sites, especially in winter season. This could be due to an underprediction of the winter model vertical mixing and also to an overestimation of PM emissions. Simulated inorganic components (ammonium and sulfate) and secondary organic aerosols (SOA) were compared to measurements taken at Aveiro (northwest coast of Portugal). An underestimation of the three components was verified. However, the model is able to predict their seasonal variation. Nevertheless, as a first approach, and despite the complex topography and coastal location of Portugal affected by sea salt natural aerosols emissions, the results obtained show that the model reproduces the PM levels, temporal evolution, and spatial patterns. The concentration maps reveal that the areas with high PM values are covered by the air quality monitoring network.  相似文献   

14.
INTRODUCTION: The role of biogenic emissions in tropospheric ozone production is currently under discussion and major aspects are not well understood yet. This study aims towards the estimation of the influence of biogenic emissions on tropospheric ozone concentrations over Saxony in general and of biogenic emissions from brassica napus in special. MODELLING TOOLS: The studies are performed by utilizing a coupled numerical modelling system consisting of the meteorological model METRAS and the chemistry transport model MUSCAT. For the chemical part, the Euro-RADM algorithm is used. EMISSIONS: Anthropogenic and biogenic emissions are taken into account. The anthropogenic emissions are introduced by an emission inventory. Biogenic emissions, VOC and NO, are calculated within the chemical transport model MUSCAT at each time step and in each grid cell depending on land use type and on the temperature. The emissions of hydrocarbons from forest areas as well as biogenic NO especially from agricultural grounds are considered. Also terpene emissions from brassica napus fields are estimated. SIMULATION SETUP AND METEOROLOGICAL CONDITIONS: The simulations were performed over an area with an extension of 160 x 140 km2 which covers the main parts of Saxony and neighboring areas of Brandenburg, Sachsen-Anhalt and Thuringia. Summer smog with high ozone concentrations can be expected during high pressure conditions on hot summer days. Typical meteorological conditions for such cases were introduced in an conceptual way. RESULTS: It is estimated that biogenic emissions change tropospheric ozone concentrations in a noticeable way (up to 15% to 20%) and, therefore, should not be neglected in studies about tropospheric ozone. Emissions from brassica napus do have a moderate potential to enhance tropospheric ozone concentrations, but emissions are still under consideration and, therefore, results vary to a high degree. CONCLUSIONS: Summing up, the effect of brassica napus terpene emissions on ozone concentrations is noticeable, but not too pronounced. The results give a preliminary estimate on what the effect due to brassica napus emissions could be until better parameterizations can be derived from measurements.  相似文献   

15.
The purpose of this paper is to describe oxidant production and transport along the western shore of Lake Michigan. Air quality and meteorological data were collected in this area of the midwest during the summers of 1976–1978 using a ground-based laboratory and an Instrumented aircraft. Ozone, oxides of nitrogen, hydrocarbons (both total and individual), halocarbons, and numerous meteorological parameters were monitored continuously at the ground site near Kenosha, WI. Aircraft measurements included ozone, oxides of nitrogen, condensation nuclei, visual range (nephelometer), sulfur dioxide, temperature, and relative humidity.  相似文献   

16.
The aim of this study was to identify areas of potential relevant exposure to pollutants within Rome's urban core. To meet this goal, intensive field campaigns were conducted and simulations were performed, using the flexible air quality regional model (FARM), to study winter and summer pollution episodes. The simulations were performed using a complete emission inventory that included traffic flow model results of the Roman street network to better describe, with respect to the available diffuse national emission inventory, the hourly variation of traffic emissions in the city. The meteorological reconstruction was performed by means of both prognostic and diagnostic models by using experimental data collected during the field campaigns. To evaluate the capability of the FARM model to capture the main features of the selected episodes, a comparison of modelled results against observed air quality data for different pollutants was performed at urban and rural sites. FARM performed well in predicting ozone (O3) and nitrogen dioxide (NO2) concentrations, showing a good reproduction of both daily peaks and their diurnal variations. The model also showed a good capability to reproduce the magnitude of volatile alkane, aromatic and carbonyl compound concentrations. PM10 model results revealed the tendency to under-predict the observed values. PM composition model results were compared with observed data, evidencing good results for elemental carbon (EC), nitrate (NO3) and ammonium (NH4+), underestimation for sulphate (SO42−) and poor performance for organic matter (OM). The soil components of PM were found to be significantly under-predicted by the model, especially during Saharan dust episodes. Overall, the study results show large areas of high O3 and PM10 concentrations where levels of pollutants should be carefully monitored and population exposure evaluated.  相似文献   

17.
This paper presents a statistical model that is capable of predicting ozone levels from precursor concentrations and meteorological conditions during daylight hours in the Shuaiba Industrial Area (SIA) of Kuwait. The model has been developed from ambient air quality data that was recorded for one year starting from December 1994 using an air pollution mobile monitoring station. The functional relationship between ozone level and the various independent variables has been determined by using a stepwise multiple regression modelling procedure. The model contains two terms that describe the dependence of ozone on nitrogen oxides (NOx) and nonmethane hydrocarbon precursor concentrations, and other terms that relate to wind direction, wind speed, sulphur dioxide (SO2) and solar energy. In the model, the levels of the precursors are inversely related to ozone concentration, whereas SO2 concentration, wind speed and solar radiation are positively correlated. Typically, 63 % of the variation in ozone levels can be explained by the levels of NOx. The model is shown to be statistically significant and model predictions and experimental observations are shown to be consistent. A detailed analysis of the ozone-temperature relationship is also presented; at temperatures less than 27 °C there is a positive correlation between temperature and ozone concentration whereas at temperatures greater than 27 °C a negative correlation is seen. This is the first time a non-monotonic relationship between ozone levels and temperature has been reported and discussed.  相似文献   

18.
Meteorological conditions have a decisive impact on surface ozone concentrations. In this study, an empirical model is used to explain the interdependence of ozone and grosswetterlagen. Different meteorological parameters such as air temperature, global solar radiation, relative humidity, wind direction and wind speed are used. Additional nitric oxide (NO) was taken as a representative for the emission situation and ozone maximum of the preceding day in order to evaluate the development of the photochemical situation. The dataset includes data collected over a period of three years (1992–1994) from three stations outside of Munich and one in the center of Munich. All values become variables by calculating means, sums or maxima of the basic dataset consisting of half-hour means. Seasonal periodicity of data is detected with Fourier analysis and eliminated by a division method after computing a seasonal index. The dataset is divided into three different grosswetterlagen groups, depending on main wind direction. One mostly cyclonic (westerly winds), onemixed (alternating winds) and one onlyanticyclonic (easterly winds). The last is completed with one summertime group including values from April to August. Factor analysis is performed for each group to obtain independent linear variable combinations. Overall, relative humidity is the dominant parameter, a typical value indicating meteorological conditions during a grosswetterlage. Linear multiple regression analysis is performed using the factors obtained to reveal how the ozone concentrations are explained in terms of meteorological parameters and NO. The results improve from cyclonic to anticyclonic grosswetterlagen in conformance with the increasing significance of photochemistry, indicated by the high solar radiation and high temperature, and the low relative humidity and low wind speed. The explained variance r2 reaches its maximum with more than 50 % of the time in Munich center. This empirical model is applicable to the forecasting of local ozone maximum concentrations with a total standard error deviation of 8.5 to 12.8 % and, if ozone concentrations exceed 80 ppb, with a standard error deviation of 5.4 to 9.5 %.  相似文献   

19.
A Bayesian hierarchical regime switching model describing the spatial–temporal behavior of ozone (O3) within a domain covering Lake Michigan during spring–summer 1999 is developed. The model incorporates linkages between ozone and meteorology. It is specifically formulated to identify meteorological regimes conducive of high ozone levels and allow ozone behavior during these periods to be different from typical ozone behavior. The model is used to estimate or forecast spatial fields of O3 conditional on observed (or forecasted) meteorology including temperature, humidity, pressure, and wind speed and direction. The model is successful at forecasting the onset of periods of high ozone levels, but more work is needed to also accurately identify departures from these periods.  相似文献   

20.
Large day-to-day variability in O3 and CO was observed at Chongming, a remote rural site east of Shanghai, in August 2010. High ozone periods (HOPs) that typically lasted for 3?C5?days with daily maximum ozone exceeding 102?ppb were intermittent with low ozone periods (LOPs) with daily maximum ozone less than 20?ppb. The correlation analysis of ozone with meteorological factors suggests that the large variations of surface ozone are driven by meteorological conditions correlated with the changes in the location and intensity of the west Pacific subtropical high (WPSH) associated with the East Asian summer monsoon (EASM). When the center of WPSH with weaker intensity is to the southeast of Chongming site, the mixing ratios and variability of surface ozone are higher. When the center of WPSH with stronger intensity is to the northeast of Chongming site, the mixing ratios and variability of surface ozone are lower. Sensitivity simulations using the GEOS-Chem chemical transport model indicate that meteorological condition associated with WPSH is the primary factor controlling surface ozone at Chongming in August, while local anthropogenic emissions make significant contributions to surface ozone concentrations only during HOP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号