首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
广州东站室内停车场空气中羰基化合物调查   总被引:2,自引:0,他引:2  
汽车尾气是大气中羰基化合物的主要来源之一.利用实验室已经建立起来的羰基化合物的检测方法,对广州东站室内停车场内空气进行了检测,结果表明,汽车尾气中检测出21种目标化合物,浓度最高的羰基化合物分别是甲醛、乙醛和丙酮,占总的羰基化合物的76.2%(质量分数).  相似文献   

2.
Carbonyl emissions from commercial cooking sources in Hong Kong   总被引:2,自引:0,他引:2  
Cooking fumes are an important carbonyl emission source, especially in a highly urbanized city, such as Hong Kong. Cooking exhaust from 15 commercial kitchens of a variety of cooking styles was sampled and analyzed for a suite of 13 carbonyl compounds. Carbonyl compositions were varied among the different cooking styles. Formaldehyde was generally the most abundant carbonyl, and its contribution to the total carbonyl amount on a molar basis ranged from 12 to 60%. Acrolein was also found to be an abundant carbonyl in the cooking exhaust. The highest contribution by acrolein to the total carbonyls was found to be 30% in the exhaust of a western-style steak restaurant. Long-chain saturated carbonyls, that is, heptanal, octanal, and nonanal, accounted for a significant fraction (> 40%) of the total carbonyls in kitchens that always used heated cooking oils. Two dicarbonyls, glyoxal and methylglyoxal, had a various presence in the cooking emissions, ranging from negligible to 10%. The presence of benzaldehyde and tolualdehyde was mostly negligible in the sampled kitchen exhaust. Annual emission rates of both individual carbonyls and total carbonyls were estimated for various types of commercial kitchens. Local-style fast-food shops contributed the highest total carbonyl emissions per year mainly because of the large number of this kind of restaurant in Hong Kong. The citywide annual emission rates of the three most toxic carbonyls, formaldehyde, acetaldehyde, and acrolein, were estimated assuming that the limited number of sampled restaurants were representative of the average restaurants. Such estimates of carbonyl emission rates were comparable to the estimated carbonyl emissions from vehicular sources, suggesting the importance of commercial cooking as a source for carbonyls in Hong Kong.  相似文献   

3.
Abstract

Cooking fumes are an important carbonyl emission source, especially in a highly urbanized city, such as Hong Kong. Cooking exhaust from 15 commercial kitchens of a variety of cooking styles was sampled and analyzed for a suite of 13 carbonyl compounds. Carbonyl compositions were varied among the different cooking styles. Formal dehyde was generally the most abundant carbonyl, and its contribution to the total carbonyl amount on a molar basis ranged from 12 to 60%. Acrolein was also found to be an abundant carbonyl in the cooking exhaust. The highest contribution by acrolein to the total carbonyls was found to be 30% in the exhaust of a western-style steak restaurant. Long-chain saturated carbonyls, that is, heptanal, octanal, and nonanal, accounted for a signifi-cant fraction (>40%) of the total carbonyls in kitchens that always used heated cooking oils. Two dicarbonyls, glyoxal and methylglyoxal, had a various presence in the cooking emissions, ranging from negligible to 10%. The presence of benzaldehyde and tolualdehyde was mostly negligible in the sampled kitchen exhaust. Annual emission rates of both individual carbonyls and total carbon-yls were estimated for various types of commercial kitchens. Local-style fast-food shops contributed the highest total carbonyl emissions per year mainly because of the large number of this kind of restaurant in Hong Kong. The citywide annual emission rates of the three most toxic carbonyls, formaldehyde, acetaldehyde, and acrolein, were estimated assuming that the limited number of sampled restaurants were representative of the average restaurants. Such estimates of carbonyl emission rates were comparable to the estimated carbonyl emissions from vehicular sources, suggesting the importance of commercial cooking as a source for carbonyls in Hong Kong.  相似文献   

4.
Twenty-one carbonyl compounds were measured simultaneously at four hotel ballrooms in urban Guangzhou during the autumn, 2002. In each ballroom, measurements were carried out in business hours in the evening (20:30–24:00) on 7 consecutive days without any disturbance of the ballroom's normal operation. Nineteen out of the 21 target carbonyl compounds were identified in indoor and outdoor air. In the outdoor environment, formaldehyde was the most abundant carbonyl, followed by acetaldehyde, and there existed a strong correlation between formaldehyde and acetaldehyde. In the indoor air, however, acetaldehyde was the most abundant carbonyl, its concentrations seemed to be affected significantly by smoking. The indoor concentrations of carbonyls were found higher than their outdoor counterparts with only a few exceptions. Further studies concerning the indoor/outdoor ratios and mutual correlation of the carbonyls indicated that apart from direct emission from indoor materials and infiltration of outdoor air, other anthropogenic sources, e.g. tobacco smoke, also significantly contributed to carbonyl compounds. The possible sources of some high molecular weight carbonyls, e.g. nonanaldehyde, were also discussed briefly. Preliminary estimate of the exposures and risks due to carbonyls in the ballrooms was made, which indicated that long-term exposure in such places might cause increased chance of developing cancers.  相似文献   

5.
The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h)?1 and that of diesel is 30.7 mg (kW h)?1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.  相似文献   

6.
The characteristics of carbonyl compounds (carbonyls) including concentrations, major sources, and personal exposure were investigated for 29 vehicles including taxi, bus and subway in Beijing. It was found that the taxis (Xiali, TA) and buses (Huanghe, BA) fueled by gasoline with longer service years had the higher indoor carbonyl levels (178±42.7 and 188±31.6 μg m−3) while subways energized by electricity without exhaust and the jingwa buses (BB) driven in the suburb had the lower levels with total concentrations of 98.5±26.3 and 92.1±20.3 μg m−3, respectively. Outdoor carbonyls of taxi cars and buses were nearly at the same level with their total concentrations varying from 80 to 110 μg m−3. The level of outdoor subways carbonyls was equal with the ambient air levels. Exhaust leakage, indoor material emissions, photochemical formation, and infiltration of outdoor air were considered to be the major sources to in-vehicle carbonyls. Personal exposures and cancer risk to formaldehyde and acetaldehyde were calculated for professional bus and taxi drivers, respectively. Taxi drivers had the highest cancer risk with personal exposure to formaldehyde and acetaldehyde of 212 and 243 μg day−1, respectively. The public concern should pay considerable attention to professional drivers’ health.  相似文献   

7.
Carbonyl compounds in the urban environment of Athens,Greece   总被引:6,自引:0,他引:6  
The concentration levels of 15 selected carbonyl compounds in 62 samples were determined at two sites in Athens basin from June to December 2000. Formaldehyde was the most abundant species (0.05-39 microg m(-3)), which comprised from 22% to 37% of the total measured compounds, followed by acetaldehyde (4.32-49 microg m(-3)), acetone/acrolein (0.64-198 microg m(-3)) and butanal (0.79-140 microg m(-3)). The mean formaldehyde/acetaldehyde and acetaldehyde/propanal molar ratios were calculated. No significant seasonal differences were observed for all the carbonyls. Photochemical production was found to weigh upon atmospheric levels for 83-93% in summer days, dropping below 33% in the winter. The importance of formaldehyde and acetaldehyde as a source of hydroxyl radicals in Athens was also assessed.  相似文献   

8.
Indoor and outdoor carbonyl concentrations were measured simultaneously in 12 urban dwellings in Beijing, Shanghai, Guangzhou, and Xi’an, China in summer (from July to September in 2004) and winter (from December 2004 to February 2005). Formaldehyde was the most abundant indoor carbonyls species, while formaldehyde, acetaldehyde and acetone were found to be the most abundant outdoor carbonyls species. The average formaldehyde concentrations in summer indoor air varied widely between cities, ranging from a low of 19.3 μg m−3 in Xi’an to a high of 92.8 μg m−3 in Beijing. The results showed that the dwellings with tobacco smoke, incense burning or poor ventilation had significantly higher indoor concentrations of certain carbonyls. It was noticed that although one half of the dwellings in this study installed with low emission building materials or furniture, the carbonyls levels were still significantly high. It was also noted that in winter both the indoor and outdoor acetone concentrations in two dwellings in Guangzhou were significantly high, which were mainly caused by the usage of acetone as industrial solvent in many paint manufacturing and other industries located around Guangzhou and relatively longer lifetime of acetone for removal by photolysis and OH reaction than other carbonyls species. The indoor carbonyls levels in Chinese dwellings were higher than that in dwellings in the other countries. The levels of indoor and ambient carbonyls showed great seasonal differences. Six carbonyls species were carried out the estimation of indoor source strengths. Formaldehyde had the largest indoor source strength, with an average of 5.25 mg h−1 in summer and 1.98 mg h−1 in winter, respectively. However, propionaldehyde, crotonaldehyde and benzaldehyde had the weakest indoor sources.  相似文献   

9.
Guo H  Lee SC  Louie PK  Ho KF 《Chemosphere》2004,57(10):1363-1372
Ambient air quality measurements of 156 species including 39 alkanes, 32 alkenes, 2 alkynes, 24 aromatic hydrocarbons, 43 halocarbons and 16 carbonyls, were carried out for 120 air samples collected at two sampling stations (CW and TW) in 2001 throughout Hong Kong. Spatial variations of volatile organic compounds (VOCs) in the atmosphere were investigated. Levels of most alkanes and alkenes at TW site were higher than that at the CW site, while the BTEX concentrations at the two sites were close. The BTEX ratios at CW and TW were 1.6:10.1:1.0:1.6 and 2.1:10.8:1.0:2.0, respectively. For major halogenated hydrocarbons, the mean concentrations of chloromethane, CFCs 12 and 22 did not show spatial variations at the two sites. However, site-specific differences were observed for trichloroethene and tetrachloroethene. Furthermore, there were no significant differences for carbonyls such as formaldehyde, acetaldehyde and acetone between the two sites. The levels of selected hydrocarbons in winter were 1-5 times that in summer. There were no common seasonal trends for carbonyls in Hong Kong. The ambient level of formaldehyde, the most abundant carbonyl, was higher in summer. However, levels of acetaldehyde, acetone and benzaldehyde in winter were 1.6-3.8 times that in summer. The levels of CFCs 11 and 12, and chloromethane in summer were higher than that in winter. Strong correlation of most hydrocarbons with propene and n-butane suggested that the primary contributors of hydrocarbons were vehicular emissions in Hong Kong. In addition, gasoline evaporation, use of solvents, leakage of liquefied petroleum gas (LPG), natural gas leakage and other industrial emissions, and even biogenic emissions affected the ambient levels of hydrocarbons. The sources of halocarbons were mainly materials used in industrial processes and as solvents. Correlation analysis suggested that photochemical reactions made significant contributions to the ambient levels of carbonyls in summer whereas in winter motor vehicle emissions would be the major sources of the carbonyls. The photochemical reactivity of selected VOCs was estimated in this study. The largest contributors to ozone formation were formaldehyde, toluene, propene, m,p-xylene, acetaldehyde, 1-butene/i-butene, isoprene and n-butane, suggesting that motor vehicles, gasoline evaporation, use of solvents, leakage of LPG, photochemical processes and biogenic emission are sources in the production of ozone. On the other hand, VOCs from vehicles and gasoline evaporation were predominant with respect to reactions with OH radical.  相似文献   

10.
Vehicular emission (VE) is one of the important anthropogenic sources for airborne carbonyls in urban area. Six types of VE-dominated samples were collected at representative locations in Hong Kong where polluted by a particular fueled type of vehicles, including (i) a gas refilling taxis station (liquefied petroleum gas [LPG] emission); (ii) a light-duty passenger car park (gasoline emission); (iii) a minibus station (diesel emission); (iv) a single-deck-bus depot (diesel emission); (v) a double-deck-bus depot (diesel emission); and (vi) a whole-food market entrance for light- and heavy-duty vehicles (diesel emission). A total of 15 carbonyls in the samples were quantified. Formaldehyde was the most abundant carbonyl among the VE-dominated samples, and its contribution to the total quantified amount on a molar basis ranged from 54.8% to 60.8%. Acetaldehyde and acetone were the next two abundant carbonyls. The carbonyls were quantified at three roadside locations in Hong Kong. The highest concentrations of formaldehyde and acetaldehyde, 22.7 +/- 8.4 and 6.0 +/- 2.8 microg/m3, respectively, were determined in the samples collected at a main transportation gate for goods between Hong Kong and Mainland China. The total quantified carbonyl concentration, 37.9 +/- 9.3 microg/m3, was the highest at an entrance of a cross-harbor tunnel in downtown area. The theoretical carbonyls compositions of the three roadside locations were estimated according to the VE-dominated sample profiles and the statistics on vehicle numbers and types during the sampling period. The measured compositions of formaldehyde were much higher than the theoretical compositions in summer, demonstrating that photochemical reactions significantly contributed to the formaldehyde production in the roadsides.  相似文献   

11.
The concentrations of C1–C8 carbonyl compounds were measured at two urban sites in Hong Kong from October 1997 to September 2000. The daily total carbonyl concentrations were found to range from 2.4 to 37 μg m−3. Formaldehyde was the most abundant species, which comprised from 36 to 43% of the total detected carbonyls, followed by acetaldehyde (18–21%) and acetone (8–20%). The highest 24-hour average concentrations measured were 10 and 7.7 μg m−3 for formaldehyde and acetaldehyde, respectively. Seasonal and temporal variations in the concentrations of formaldehyde and acetaldehyde were not obvious, but lowest concentrations often occurred from June to August. The mean formaldehyde/acetaldehyde molar ratios at the two sites in summer (2.8±1.1 and 2.5±1.2) were significantly higher (p⩽0.01) than those in winter periods (1.9±0.6 and 2.0±0.6). The phenomena were explained by influences of both photochemical reactions and local meteorological conditions. Better correlations between formaldehyde and acetaldehyde, and between NOx and each of the two major carbonyls were obtained in winter periods indicating direct vehicular emissions were the principal sources. The ambient formaldehyde and acetaldehyde concentrations in the urban atmosphere of Hong Kong were within the normal ranges reported in the literature for other urban sites world-wide.  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAHs) and carbonyls compounds are becoming a major component of atmospheric toxic air pollutants (TAPs) in Hong Kong. Many studies in Hong Kong show that traffic emission is one of the most significant contributors in urban area of Hong Kong. A twelve months monitoring program for PAHs and carbonyl compounds started on 10 April 1999 including a two weeks intensive sampling in winter had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the monthly and seasonal variations of PAHs and carbonyl concentrations. The objective of this study is to characterize the roadside concentrations of selected TAPs (PAHs and carbonyl compounds) and to compare with the long-term compliance monitoring data acquired by Hong Kong Environmental Protection Department (EPD). Monthly variations, seasonal variations and winter/summer ratios at the monitoring station are discussed.  相似文献   

13.
A great number of studies on the ambient levels of formaldehyde and other carbonyls in the urban rural and maritime atmospheres have been published because of their chemical and toxicological characteristics, and adverse health effects. Due to their toxicological effects, it was considered necessary to measure these compounds at different sites in the metropolitan area of Mexico City, and to calculate the total rate of photolytic constants and the photolytic lifetime of formaldehyde and acetaldehyde. Four sites were chosen. Sampling was carried out at different seasons and atmospheric conditions. The results indicated that formaldehyde was the most abundant carbonyl, followed by acetone and acetaldehyde. Data sets obtained from the 4 sites were chosen to calculate the total rate of photolysis and the photolytic lifetime for formaldehyde and acetaldehyde. Maximum photolytic rate values were obtained at the maximum actinic fluxes, as was to be expected.  相似文献   

14.
Characterising sources and sinks of rural VOC in eastern France   总被引:2,自引:0,他引:2  
Fifty non-methane hydrocarbons (NMHC) and seventeen carbonyl compounds were measured at a French rural site from 1997 to 2001, as part of the EMEP programme. Data handling was based on an original source-receptor approach. First, the examination of the levels and trends was completed by the comparison of the seasonal distribution of rural and urban VOC/acetylene ambient ratios. This analysis has shown that most of the compounds derived from mixing and photochemical transformation of mid-range transported urban pollutants from the downwind urban area. Then, identified sources and sinks were temporally apportioned. Urban air masses mixing explains, at least, 80% of the wintertime levels of anthropogenic NMHC and isoprene. In summer, photochemistry dominates the day-to-day distribution of anthropogenic NMHC whilst summertime isoprene is also controlled by in-situ biogenic emissions. Then, the results of C(1)-C(3) carbonyls were discussed with respect to their direct biogenic and anthropogenic emissions and photochemical production through the [carbonyl/auto-exhaust tracers] emission ratio. Diluted vehicle exhaust emissions mainly contribute to the total content of lower aldehydes in winter while other processes control lower ketones. Secondary production is predominant in summer with at least a 50% high intensity. Its dependence upon temperature and radiation is also demonstrated. Finally, the importance of the primary and secondary biogenic production of acetone and formaldehyde is assessed. In particular, biogenic contribution would explain 37 +/- 25% of acetone levels in summer.  相似文献   

15.
Abstract

Personal 48-hr exposures of 15 randomly selected participants as well as microenvironment concentrations in each participant’s residence and workplace were measured for 16 carbonyl compounds during summer–fall 1997 as a part of the Air Pollution Exposure Distributions within Adult Urban Populations in Europe (EXPOLIS) study in Helsinki, Finland. When formaldehyde and acetaldehyde were excluded, geometric mean ambient air concentrations outside each participant’s residence were less than 1 ppb for all target compounds. Geometric mean residential indoor concentrations of carbonyls were systematically higher than geometric mean personal exposures and indoor workplace concentrations. Additionally, residential indoor/outdoor ratios indicated substantial indoor sources for most target compounds. Carbonyls in residential indoor air correlated significantly, suggesting similar mechanisms of entry into indoor environments. Overall, this study demonstrated the important role of non-traffic-related emissions in the personal exposures of participants in Helsinki and that comprehensive apportionment of population risk to air toxics should include exposure concentrations derived from product emissions and chemical formation in indoor air.  相似文献   

16.
A comprehensive assessment of indoor carbonyl compounds for the academic staff, workers, and students was conducted on a university campus in Xiamen, China. A total of 15 representative environment categories, including 12 indoor workplaces and three residential units, were selected. The potential indoor pollution sources were identified based on the variability in the molar compositions and correlation analyses for the target carbonyls. Furnishing materials, cooking emissions, and electronic equipment, such as photocopiers, can generate various carbonyls in the workplace. Comparison studies were conducted in the clerical offices, demonstrating that off-gases from wooden furniture and lacquer coatings, environmental tobacco smoke (ETS), and the use of cleaning reagents elevated the indoor carbonyl levels. The measured concentrations of formaldehyde and acetaldehyde in most locations surpassed the exposure limit levels. The lifetime cancer hazard risk (R) associated with formaldehyde was above the concern risk level (1 × 10?6) in all of the workplaces. The results indicate that formaldehyde exposure is a valid occupational health and safety concern. Wooden furniture and refurbishing materials can pose serious health threats to occupants. The information in this study could act as a basis for future indoor air quality monitoring in Mainland China.
Implications:A university campus represents a microscale city environment consisting of all the working, living, and commercial needs of staff and students. The scope of this investigation covers 21 hazardous carbonyl species based on samples collected from 15 categories of workplaces and residential building in a university campus in southern China. Findings of the study provide a comprehensive assessment of indoor air quality with regards to workers’ health and safety. No similar study has been carried out in China.  相似文献   

17.
Airborne carbonyl compounds have been sampled at three European semi-remote to semi-urban test sites for radiocarbon (14C) analysis. The used methodology included collection on 2,4-dinitrophenylhydrazine coated silica gel cartridges, chromatographic isolation of the formed hydrazones, combustion into CO2, reduction into graphite followed by accelerator mass spectrometry. In combination with this, liquid chromatography coupled to atmospheric pressure chemical ionisation mass spectrometry was used for chemical speciation of the collected carbonyls.At all sites the carbonyls were found to be of a mixed biogenic/anthropogenic origin. The determining factor for the proportion of fossil (anthropogenic) carbon in the samples was the vicinity of urban sources for carbonyls and their photochemical precursors. At meteorological conditions, which gave the test sites semi-rural/semi-remote characteristics the samples contained an average of 24% (range: 10–34%) of fossil carbonylic carbon. When air masses were transported from urban areas to the test-sites significantly higher proportions of fossil carbonylic carbon were determined with a maximum of 61%. Principal component analysis on this limited data set indicated that a low fossil proportion of carbonylic carbon is associated with high proportions of acetaldehyde, acetone, pentanone and acrolein. Until further radicarbon studies are carried out the conclusion remains that for the carbonyl compounds measured European background levels are of a predominant biogenic origin.  相似文献   

18.
A preliminary study of ambient carbonyls was performed in Xalapa City to measure carbonyls in the atmosphere of this City, because it has an explosive increase in population and traffic density, but few industries. The city is located at the eastern flanks of the Sierra Madre Oriental, between 1350 and 1550 m above sea level. Acetone was the most abundant carbonyl in June, followed by formaldehyde and acetaldehyde, whereas acetaldehyde was the most abundant one in November. Higher concentrations were observed in autumn than in spring, probably due to stagnation conditions in autumn and heavy rains from late spring to early autumn. The very high concentrations of acetaldehyde found in November could have been caused by an accidental leak or spill from a truck, since no stationary sources were identified and acetaldehyde concentrations steeply rose and constantly decreased after few days. Moreover, a highly transited highway traverses Xalapa. The most important ozone and carbon monoxide concentrations were below the Mexican Air Quality Standards; 216 μg m−3 (0.11 ppm) for 1 h average and 12.6 mg m−3 (11 ppm) for 8 h moving average, respectively. The low concentrations of the main carbonyls, compared with the values reported for other urban areas, and of carbon monoxide, seem to indicate that air quality is still satisfactory in Xalapa City.  相似文献   

19.
Emissions of carbonyl compounds such as formaldehyde, acetaldehyde, and acrolein are of interest to the scientific and regulatory communities due to their suspected or likely impacts on human health. The present work investigates emissions of carbonyl compounds from nine Class 8 heavy-duty diesel (HDD) tractors and also from nine diesel-powered backup generators (BUGs); the former were chosen because of their ubiquity as an emission source, and the latter because of their proximity to centers of human activity. The HDD tractors were operated on the ARB 4-Mode heavy heavy-duty diesel truck (HHDDT) driving cycle, while the BUGs were operated on the ISO 8178 Type D2 5-mode steady-state cycle and sampled using a mobile emissions laboratory (UCR MEL) equipped with a full-scale dilution tunnel. Samples were analyzed using the SAE930142 (Auto/Oil) method for 11 aldehydes, from formaldehyde to hexanaldehyde, and 2 ketones (acetone and methyl ethyl ketone). Although absolute carbonyl emissions varied widely by BUG, the relative contributions of the different carbonyls were similar (e.g., median: 56% for formaldehyde). A slight increasing trend with engine load was observed for relative formaldehyde contribution, but not for acetaldehyde contribution, for the BUGs. On-road per-mile carbonyl emission factors were a strong function of operating mode of the ARB HHDDT cycle, and found to decrease in the order Creep>Transient>Cruise. This order is qualitatively similar to emission factors for PAHs and n-alkanes determined for the same set of Class 8 diesel tractors in an earlier work. In general, relative carbonyl contributions for the HDD tractors were similar to those for BUGs (e.g., median: 54% for formaldehyde). These results indicate that while engine operating mode and application appear to exert a strong influence on the total absolute mass emission rate of the carbonyls measured, they do not appear to exert as strong an influence on the relative mass emission rates of individual carbonyls.  相似文献   

20.
Personal 48-hr exposures of 15 randomly selected participants as well as microenvironment concentrations in each participant's residence and workplace were measured for 16 carbonyl compounds during summer-fall 1997 as a part of the Air Pollution Exposure Distributions within Adult Urban Populations in Europe (EXPOLIS) study in Helsinki, Finland. When formaldehyde and acetaldehyde were excluded, geometric mean ambient air concentrations outside each participant's residence were less than 1 ppb for all target compounds. Geometric mean residential indoor concentrations of carbonyls were systematically higher than geometric mean personal exposures and indoor workplace concentrations. Additionally, residential indoor/outdoor ratios indicated substantial indoor sources for most target compounds. Carbonyls in residential indoor air correlated significantly, suggesting similar mechanisms of entry into indoor environments. Overall, this study demonstrated the important role of non-traffic-related emissions in the personal exposures of participants in Helsinki and that comprehensive apportionment of population risk to air toxics should include exposure concentrations derived from product emissions and chemical formation in indoor air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号