首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The water balance for the site Mühleggerköpfl in the North Tyrolean Limestone Alps has been established to a soil depth of 50 cm. The evaporation amounts to 42% and deep percolation is 58 % of the precipitation. The surface runoff was negligible and therefore the according nitrate fluxes as well. Soil water analysis revealed mean nitrate concentrations of 3 to 15 mg NO3 L−1, depending on soil depth. The nitrate concentrations at 50 cm soil depth and the associated percolation rates led to NO2 N outputs of 15.9 kg NO3 N ha−1 in the year 1999 and 7.9 kg NO3 N ha−1 in the year 2000.

  相似文献   

2.
Khwaja HA  Narang A 《Chemosphere》2008,71(11):2030-2043
Measurements of carbonyls and C2–C6 non-methane hydrocarbons (NMHCs) were made in ambient air at a rural site at the summit of Whiteface Mountain (WFM) in New York State. Alkanes dominated in the samples, with ethane and propane making up about 55% of the total on a carbon-atom basis. Ethane, the longest-lived of the NMHCs, showed a mixing ratio in the range of 0.86–2.1 ppbv. Photochemical ageing analysis indicated an anthropogenic influence on the NMHC levels. The photochemical reactivity of the hydrocarbons, calculated in terms of propylene-equivalent concentration, was dominated by alkenes (propene and ethene), which accounted for 74% of the total NMHC sum. Air mass back-trajectories have been used to investigate the origin of the observed NMHCs and carbonyls. Higher concentrations were found when air masses arrived from the midwestern US corridor. Acetone was the most abundant species, comprising from 31% to 53% of the total detected carbonyls, followed by MEK (15–53%), HCHO (7–39%), and CH3CHO (7–19%). Average concentrations were determined to be 1.61 ppbv for CH3C(O)CH3, 1.40 ppbv for MEK, 1.16 ppbv for HCHO, and 0.49 ppbv for CH3CHO. The variations in carbonyl concentrations were observed to follow patterns similar to variations in O3 concentrations, typical of secondary products. Correlations and statistical analysis of the carbonyls and NMHCs were performed, and showed that most of the compounds derived from mixing and photochemical transformation of long-range transported pollutants from the major source areas. Ranking of the carbonyls with respect to removal of the OH radical showed HCHO to be the most important species, followed by CH3CHO, MEK, and CH3C(O)CH3.  相似文献   

3.
A multi-dimensional and multi-species reactive transport model was developed to aid in the analysis of natural attenuation design at chlorinated solvent sites. The model can simulate several simultaneously occurring attenuation processes including aerobic and anaerobic biological degradation processes. The developed model was applied to analyze field-scale transport and biodegradation processes occurring at the Area-6 site in Dover Air Force Base, Delaware. The model was calibrated to field data collected at this site. The calibrated model reproduced the general groundwater flow patterns, and also, it successfully recreated the observed distribution of tetrachloroethene (PCE), trichloroethene (TCE), dichloroethylene (DCE), vinyl chloride (VC) and chloride plumes. Field-scale decay rates of these contaminant plumes were also estimated. The decay rates are within the range of values that were previously estimated based on lab-scale microcosm and field-scale transect analyses. Model simulation results indicated that the anaerobic degradation rate of TCE, source loading rate, and groundwater transport rate are the important model parameters. Sensitivity analysis of the model indicated that the shape and extent of the predicted TCE plume is most sensitive to transmissivity values. The total mass of the predicted TCE plume is most sensitive to TCE anaerobic degradation rates. The numerical model developed in this study is a useful engineering tool for integrating field-scale natural attenuation data within a rational modeling framework. The model results can be used for quantifying the relative importance of various simultaneously occurring natural attenuation processes.  相似文献   

4.
In the North Tyrolean Limestone Alps a site was investigated over a four-year period (1998–2001) in order to assess the nitrogen saturation status, the nitrogen budget (quantification of the net uptake of nitrogen by the canopy and of the nitrogen mineralization, nitrogen uptake from roots and N2O emission rates, proof of the origin of nitrate in the soil water with stable isotope analyses), and the effects of the actual nitrogen input on ground water quality. The main goals were to quantify the nitrogen input rate, the nitrogen pools in above-ground and below-ground compartments, nitrogen turnover processes in the soil as well as the output into the groundwater and into the atmosphere. The findings are based on continuous and discontinuous field measurements as well as on model results.While nitrogen input exceeded the Critical Loads of the WHO (1995), nitrogen deficiency and nutrient imbalances were verified by needle analyses. The atmospheric input of inorganic nitrogen was higher than the nitrogen output in 50 cm soil depth. A tracer experiment with15N helped to prove that not more than half of the applied nitrate could be discharged. This allows the conclusion that nitrogen is stored in the system and that the site cannot yet be said to be saturated with nitrogen. The same result was also obtained by modelling. In addition, it was proved that the nitrogen discharge did not stem from deposition but from processes within the system.  相似文献   

5.
A series or pairs of superpressured balloons, released in a high mountain valley of central Colorado, facilitated a statistical evaluation of circulation features and turbulence in relative Lagrangian coordinates. The results revealed a monotonic increase of diffusivity coefficients and momentum fluxes with height up to the level of surrounding peaks and ridges.  相似文献   

6.

Microorganisms are responsible for the mineralisation of organic nitrogen in soils. NH +4 can be further oxidised to NO3 during nitrification and NO3 can be reduced to gaseous nitrogen compounds during denitrification. During both processes, nitrous oxide (N2O), which is known as greenhouse gas, can be lost from the ecosystem.

The aim of this study was to quantify N2O emissions and the internal microbial N cycle including net N mineralisation and net nitrification in a montane forest ecosystem in the North Tyrolean Limestone Alps during an 18-month measurement period and to estimate the importance of these fluxes in comparison with other components of the N cycle. Gas samples were taken every 2 weeks using the closed chamber method. Additionally, CO2 emission rates were measured to estimate soil respiration activity. Net mineralisation and net nitrification rates were determined by the buried bag method every month. Ion exchange resin bags were used to determine the N availability in the root zone.

Mean N2O emission rate was 0.9 kg N haa, which corresponds to 5 % of the N deposited in the forest ecosystem. The main influencing factors were air and soil temperature and NO 3 accumulated on the ion exchange resin bags. In the course of net ammonification, 14 kg NH +4 −N ha were produced per year. About the same amount of NO 3 −N was formed during nitrification, indicating a rather complete nitrification going on at the site. NO t-3 concentrations found on the ion exchange resin bags were about 3 times as high as NO t-3 produced during net nitrification, indicating substantial NO t-3 immobilisation. The results of this study indicate significant nitrification activities taking place at the Mühleggerköpfl.

  相似文献   

7.
8.
9.
Liu XH  Wai KM  Wang Y  Zhou J  Li PH  Guo J  Xu PJ  Wang WX 《Chemosphere》2012,88(5):531-541
Totally 117 cloud/fog water samples were collected at the summit of Mt. Tai (1534 m a.s.l.)—the highest mountain in the Northern China Plain. The results were investigated by a combination of techniques including back trajectory model, regional air quality and dust storm models, satellite observations and Principal Component Analysis. Elemental concentrations were determined by Inductively Coupled Plasma Mass Spectrometry, with stringent quality control measures. Higher elemental concentrations were found at Mt. Tai compared with those reported by other overseas studies. The larger proportions and higher concentrations of toxic elements such as Pb and As in cloud/fog water compared with those in rainwater at Mt. Tai suggests higher potential hazards of cloud/fog water as a source of contamination in polluted areas to the ecosystem. Peak concentrations of trace elements were frequently observed during the onset of cloud/fog events when liquid water contents of cloud/fog water were usually low and large amount of pollutants were accumulated in the ambient air. Inverse relationship between elemental concentrations and liquid water contents were only found in the samples with high electrical conductivities and liquid water contents lower than 0.3 g m−3. Affected mainly by the emissions of steel industries and mining activities, air masses transported from south/southwest of Mt. Tai were frequently associated with higher elemental concentrations. The element Mn is attributed to play an important role in the acidity of cloud/fog water. The composition of cloud/fog water influenced by an Asian dust storm event was reported, which was seldom found in the literature.  相似文献   

10.
The 7Be activity concentrations measured from 1996 to 1998 at four high-altitude stations, Jungfraujoch—Switzerland, Zugspitze—Germany, Sonnblick—Austria and Mt. Cimone—Italy, were analyzed in combination with a set of, meteorological and atmospheric parameters such as the tropopause height, relative and specific humidity and also in conjunction with 3D back-trajectories in order to investigate the climatological features of 7Be. A frequency distribution analysis on 7Be activity concentrations revealed the existence of two concentration classes around 1.5 and 6 mBq m−3 and a transition class between the two modes of the distribution at 3–4 mBq m−3. Cross-correlation analysis performed between 7Be and a number of meteorological and atmospheric parameters at the first three stations showed a strong negative correlation with relative humidity (−0.56, −0.51, −0.41) indicating the importance of wet scavenging as a controlling mechanism. Also, the positive correlation with the height of 3-days back-trajectories and tropopause height (+0.49/+0.43, +0.59/+0.36, +0.44/+0.38) shows that downward transport from the upper or middle to lower troposphere within anticyclonic conditions plays also an important role. Trajectory statistics showed that low 7Be concentrations typically originate from lower-altitude subtropical ocean areas, while high concentrations arrive from the north and high altitudes, as is characteristic for stratospheric intrusions. Although the 7Be activity concentrations are highly episodic, the monthly means indicate an annual cycle with a late-summer maximum at all stations. The correlation coefficients calculated for monthly means of the 7Be and atmospheric data suggest that the main predictor controlling the seasonality of the 7Be concentrations is tropopause height (+0.76, +0.56, +0.60), reflecting more vertical transport from upper tropospheric levels into the lower troposphere during the warm season than during the cold season.  相似文献   

11.
The 7Be activity concentrations measured from 1996 to 1998 at four high-altitude stations, Jungfraujoch—Switzerland, Zugspitze—Germany, Sonnblick—Austria and Mt. Cimone—Italy, were analyzed in combination with a set of, meteorological and atmospheric parameters such as the tropopause height, relative and specific humidity and also in conjunction with 3D back-trajectories in order to investigate the climatological features of 7Be. A frequency distribution analysis on 7Be activity concentrations revealed the existence of two concentration classes around 1.5 and 6 mBq m−3 and a transition class between the two modes of the distribution at 3–4 mBq m−3. Cross-correlation analysis performed between 7Be and a number of meteorological and atmospheric parameters at the first three stations showed a strong negative correlation with relative humidity (−0.56, −0.51, −0.41) indicating the importance of wet scavenging as a controlling mechanism. Also, the positive correlation with the height of 3-days back-trajectories and tropopause height (+0.49/+0.43, +0.59/+0.36, +0.44/+0.38) shows that downward transport from the upper or middle to lower troposphere within anticyclonic conditions plays also an important role. Trajectory statistics showed that low 7Be concentrations typically originate from lower-altitude subtropical ocean areas, while high concentrations arrive from the north and high altitudes, as is characteristic for stratospheric intrusions. Although the 7Be activity concentrations are highly episodic, the monthly means indicate an annual cycle with a late-summer maximum at all stations. The correlation coefficients calculated for monthly means of the 7Be and atmospheric data suggest that the main predictor controlling the seasonality of the 7Be concentrations is tropopause height (+0.76, +0.56, +0.60), reflecting more vertical transport from upper tropospheric levels into the lower troposphere during the warm season than during the cold season.  相似文献   

12.
The historical record of the input of pyrolysis-derived pollutants via the atmosphere, i.e. black carbon (BC), polycyclic aromatic hydrocarbons (PAH) and spheroidal carbonaceous particles (SCP) was measured in the sediments of three remote alpine lakes situated in the Julian Alps, northwest Slovenia. Parallel sedimentary trends for BC, PAH and SCP were observed across the Julian Alps and relationships among these contaminants are discussed. Inputs of these pyrolytic-contaminants to sediments of remote lakes started to rise at the end of the 19th century, while their peak inputs were observed in the mid-20th century, amounting up to 6.0 gm(-2) yr(-1) for BC, 5200 x 10(4) m(-2) yr(-1) for SCP and 2900 microg m(-2) yr(-1) for PAH. In the last two to three decades, inputs decreased substantially, by a factor of up to 3 for BC, 7 for SCP and at least 3 for PAH.  相似文献   

13.
The goal of this study is to investigate the impact of deforestation on ozone dynamics and deposition in the Brazilian Amazon basin. This goal is accomplished through i) analyses of ozone levels and deposition rates at a deforested site during the rainy season; and ii) comparisons of these data with similar information derived at a forest. At the pasture site maximum ozone mixing ratios reach 20 parts per billion on a volume basis (ppbv) but about 6 ppbv prevail over the forest. Maximum ozone deposition velocities for pastures can reach 0.7 cm s-1, which is about threefold lower than values derived for forests. Combining ozone abundance and deposition velocities, pasture maximum ozone fluxes reach approximately 0.2 microgram (ozone) m-2 s-1. This flux represents approximately 70% of the deposition rates measured over the forest. Hence, this study suggests that conversion of rainforests to pastures could lead to a net reduction (30%) in the ozone sink in the Amazon.  相似文献   

14.
Analysis of time series and trends of nitrous oxide (N2O) and halocompounds weekly monitored at the Mediterranean island of Lampedusa are discussed. Atmospheric N2O levels showed a linear upward growth rate of 0.78 ppb yr?1 and mixing ratios comparable with Northern Hemisphere global stations. CFC-11 and CFC-12 time series displayed a decline consistent with their phase-out. Chlorofluorocarbons (CFCs) replacing compounds and SF6 exhibited an increasing temporal behaviour. The most rapid growth rate was recorded for HFC-134a with a value of 9.6% yr?1. The industrial solvents CCl4 and CH3CCl3, banned by the Montreal Protocol, showed opposite trends. While CH3CCl3 reported an expected decay of ?1.8 ppt yr?1, an increasing rate of 5.7 ppt yr?1 was recorded for CCl4 and it is probably related to its relatively long lifetime and persisting emissions. Chlorinated halomethanes showed seasonality with a maximum in early April and a minimum at the end of September. Halon-1301 and Halon-1211 displayed a decreasing trend consistent with industry emission estimates.An interspecies correlation analysis gave positive high correlations between HCFC-22 and HFC-134a (+0.84) highlighting the common extensive employment as refrigerants. Sharing sources inferred the high coupling between CH3Cl and CH3Br (+0.73) and between CHCl3 and CH2Cl2 (+0.77). A singular strong relationship (+0.55) between HFC-134a and CH3I suggested the influence of an unknown anthropogenic source of CH3I.Constraining of source and sink distribution was carried out by transport studies. Results were compared with the European Environment Agency (EEA) emission database. In contrast with the emission database results, our back trajectory analysis highlighted the release of large amounts of HFC-134a and SF6 from Eastern Europe. Observations also showed that African SF6 emissions may be considerable. Leakages from SF6 insulated electrical equipments located in the industrialized Northern African areas justify our observations.  相似文献   

15.
Ozone and other air quality data from five rural sites in the industrialized Latrobe Valley, Victoria, have been subject to statistical analyses including linear regression modelling. The behaviour of O3 in the Latrobe Valley is explained largely in terms of natural background atmospheric processes as observed at Cape Grim, Tasmania.The maximum 1-h average concentration of naturally occurring O3 (obtained from a 6-year record at Cape Grim) is less than 40 ppb (v/v). In contrast the industrialized Latrobe Valley sites show O3 values exceeding 40 ppb between 1% and 3% of the time. These higher concentrations occur in conditions consistent with local photochemical production of O3 via ‘smog’ type processes and appear preferentially at low NOx concentrations (3–4 ppb) during the afternoon (13–18 h) and at high temperatures (above 25°C).A comparison of observations from an elevated station (750 m) with those from the valley floor shows systematic differences in seasonal and diurnal O3 variations and the time of day of occurrence of elevated O3 concentrations which can be explained in terms of the diurnal cycle of convective mixing and mountain/valley winds.A linear regression model incorporating this understanding has accounted for between 43% and 64% of the variance of O3 concentration at the elevated and rural stations. The statistical model incorporates temperature, time of day, month of year, wind speed, O3 concentration 24-h earlier and NOx concentration as variables in the regression equation, with temperature being the dominant variable. The standard deviation of the residual O3 values (observed minus fitted) is around 5 ppb. Auto and cross correlations are used to show that perhaps half of the unexplained variance is coherent from site to site and hence potentially could be modelled.  相似文献   

16.
Mixing ratios for NO and NO2 were measured during 1980/1981 at Deuselbach, a rural site in Germany. The data are analyzed with regard to the occurrence of nocturnal NO signals and their origins. Anthropogenic influences arising from road traffic and home heating activities are identified by their dependence on wind direction. An additional non-directional component is found to exist. It shows up most frequently in summer and when it occurs, the NO mixing ratio increases with rising temperature indicating a biological origin of night-time NO. The temporal behavior of night-time NO is usually correlated with that of CO2 but anticorrelated to that of O3. This shows that NO is brought upwards to the air intake of the NOx monitor from lower levels and that the source of the non-directional component of nocturnal NO is the earth's surface. The release of NO from soils is known from other work and this process is probably also responsible for the present observations. A flux estimate agrees with soil fluxes reported by other authors. The accumulation of NO in the surface air layer under stagnant conditions leads to the appearance of a morning peak of NO after sunrise when increased vertical mixing brings NO rich air up to the monitoring level. During summer, the morning peak may override the NO peak expected to occur at noon due to the photodissociation of NO2.  相似文献   

17.
The effect of elemental carbon (EC) on global as well as regional climate forcing is potentially very important. However, the EC data for northeastern U.S. is sparse. Daily EC concentrations, [EC], and [SO4] were measured in the northeastern U.S. at a regionally representative rural site, Whiteface Mountain (WFM; 44.366°N, 73.903°W, 1.5 km amsl, above mean sea level), New York (NY), for 1997. The air mass origin was determined using 6-h backward in time air trajectories obtained from the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT 4). [EC] and [SO4] were highly variable and influenced by synoptic–scale meteorology (rainy vs dry periods). The maximum daily [EC] and [SO4] were 364 ± 55 and 28,800 ± 3000 ng m?3, respectively. [EC] and [SO4] also showed seasonal variations at WFM. Occurrences of high daily [EC] were mainly in spring months, while peak daily [SO4] concentrations occurred in summer months. This behavior of aerosols is due to the fact that the sources of EC and SO4 are not the same and also due to the enhanced photochemical activity during summer months that increased the production of SO4 from SO2. High [EC] and [SO4] values were associated with westerly air flow from the industrialized Midwestern U.S. Sector analysis using HYSPLIT 4 air trajectories showed that regions lying between the southwest and northwest of the WFM contributed 81% and 83% of the [EC] and [SO4], respectively. The monthly net direct radiative forcing for shortwave (SW) due to EC and SO4 aerosols at the top of the atmosphere (TOA) varied from ?0.05 to ?0.50 W m?2, with an annual average of ?0.20 ± 0.15 W m?2 that gives a net cooling effect. Average net radiative forcing at WFM for clear sky is lower than the global average radiative forcing reported by IPCC (Foster and Ramaswamy, 2007).  相似文献   

18.
This study compared the variations in the mass of certain particles at an urban site, Washington, DC, and at a remote site, Shenandoah National Park, VA, in the eastern United States. Seven years (1991-1997) of Interagency Monitoring of Protected Visual Environments (IMPROVE) fine particulate matter (PM2.5), PM10, coarse fraction, SO4(2-), and total sulfur data were used for this study together with available meteorology/climatology data. Various statistical modeling and analysis procedures, including time series analysis, factor analysis, and regression modeling, were employed. Time series of the constituents were divided into four terms: the long-term mean, the intraannual perturbation, the interannual perturbation, and the synoptic perturbation. PM2.5 at the two sites made up approximately 72% of the total mass for PM10, and the coarse fraction made up the remaining 28%, on average. Thirty-one percent of the PM2.5 at the DC site and 42% at the Shenandoah site was SO4(2-), based on average data for the entire period. At the DC site, the two main contributors to the constituent mass were the long-term mean and the synoptic perturbation terms, and at the Shenandoah site, they were the long-term mean and the intra-annual perturbation terms. This suggested that the constituent mass at the two sites was affected by very different processes. The terms that provided the principal contribution to the constituent mass at the two sites were studied in detail. At the DC site, dew point trends, a climate variable, were the primary driver of the 7-year trends for PM2.5, PM10, the coarse fraction, and total sulfur, and SO2 emission trends were the primary driver of the trends for SO4(2-). SO2 emission trends influenced the trends for PM2.5 and total sulfur, appearing as the second term in the model, but only parameters dealing with climate trends had significant effects on the trends for PM10 and the coarse fraction. At the Shenandoah site, only parameters dealing with climate trends affected long-term particle trends.  相似文献   

19.
The annual cycles of hydrogen peroxide (H2O2) and methylhydroperoxide (MHP) have been investigated at a remote site in Antarctica in order to study seasonal variations as well as chemical processes in the troposphere. The measurements have been performed from March 1997 to January 1998 and in February 1999 at the German Antarctic research station Neumayer which is located at 70°39′S, 8°15′W. The obtained time series for hydrogen peroxide and methylhydroperoxide in near-surface air represents the first all-year measurements in Antarctica and indicates clearly the occurrence of seasonal variations. During polar night mean values of 0.054±0.046 ppbv (range<0.03–0.11 ppbv) for hydrogen peroxide and 0.089±0.052 ppbv (range<0.05–0.14 ppbv) for methylhydroperoxide were detected. At the sunlit period higher Mixing ratios were found, 0.20±0.13 ppbv (range<0.03–0.91 ppbv) for hydrogen peroxide and 0.19±0.10 ppbv (range<0.05–0.89 ppbv) for methylhydroperoxide. Occasional long-range transport of air masses from mid-latitudes caused enhanced peroxide concentrations at polar night. During the period of stratospheric ozone depletion we observed peroxide mixing ratios comparable to typical winter levels.  相似文献   

20.
The total suspended particle (TSP) concentration, dry deposition and wind speed were measured with a PS-1 sampler, a dry deposition plate and a Weather Monitor II (#7440), respectively, at the Experimental Farm of Thunghai University in Taiwan. Taiching Industrial Park, Taichung Cong Road (traffic) and a hospital incinerator are close to the sampling site. The sampling time was from August 2001 to December 2001. The average dry deposition flux, the TSP concentration, dry deposition velocities, average wind speed and maximum wind speed were recorded as 617.7 ± 281.4 mg/day/m2, 117.5 ± 17.6 μg/m3, 5.9 ± 2.2 cm/s, 2.7 ± 1.3 m/s and 7.6 ± 2.3 m/s, respectively, at this sampling site. Good correlation coefficients (R) of the TSP concentration and the dry deposition flux with wind speed were found, with values of 0.46 and 0.50, respectively. The concentrations and dry deposition of the total metallic elements were also obtained. The results indicated that the concentrations of anthropogenic elements (Pb, Mn, Cd, Ni, Cr and Zn) were mostly higher than those obtained in other studies around the world. The average dry deposition fluxes and TSP concentrations for Zn and Pb were 0.45 and 0.42, respectively. The same phenomenon was also observed for Fe and Mg (R = 0.59 and 0.65). The results indicate that these elements were all coming from the same emission sources at the farm sampling site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号