首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
通过对目前瓦斯治理方法的对比,结合煤层瓦斯赋存与流动理论、回采工作面矿山压力规律及采场覆岩移动规律、采空区“O”型圈等理论,提出利用地面L型钻孔抽采煤层顶板裂隙带瓦斯的方法,用于缓解低位采空区抽采巷抽采负担,消除安全隐患。实践表明:地面L型钻孔使低位采空区抽采巷平均浓度由4.43%降低到3.37%,降低了24%,治理效果明显,该方法能为大采高综放工作面瓦斯治理工作提供新的思路。  相似文献   

2.
为了进一步探究高抽巷抽采瓦斯效果,对高抽巷的最佳抽采层位进行分析。以常村矿为例,基于紧贴实际采空区碎胀系数分布的“O”型圈理论,依据采空区瓦斯的运移规律,运用FLUENT软件加载自定义UDF对采空区瓦斯分布进行数值模拟,从上隅角瓦斯浓度与抽采浓度2方面,对不同层位高抽巷的抽采效果进行分析,确定高抽巷的最佳层位,并用现场测试数据对数值模拟结果进行验证。研究结果表明:模拟计算结果与现场实测数据基本吻合,所提出的高抽巷最佳抽采层位的确定方法可有效应用于实际;合理的抽采层位不仅能够有效地降低上隅角瓦斯的浓度,而且能够提高抽采的效率。  相似文献   

3.
为确定大采高综采面高抽巷的合理位置,以李村煤矿1303工作面为研究背景,采用理论分析、数值模拟及现场监测等研究方法,对1303工作面覆岩裂隙发育特征、高抽巷空间位置对其围岩稳定性与抽采效果的影响规律进行系统研究。研究结果表明:高抽巷宜布置在覆岩裂隙发育区,远离回风巷道采动应力影响的位置;1303工作面覆岩破坏范围随推进距离增加,呈现先急剧增大后趋于稳定的趋势,工作面推进距离为300 m时,裂隙带高度稳定在50 m左右,形成瓦斯抽采的优势通道;高抽巷距离煤层顶板、回风巷越近,越易失稳,不利于长期抽采,综合考虑高抽巷不同位置时的瓦斯抽采效率及围岩稳定性,确定其合理位置分别是距离回风巷平距为35 m,垂距为45 m;结合现场瓦斯浓度监测结果,得出上隅角、工作面、回风巷瓦斯浓度最大值分别为0.42%,0.24%,0.33%,远低于瓦斯超限标准1%,进一步证明高抽巷层位的合理布置,可以提高瓦斯抽采效果。  相似文献   

4.
高抽巷现已被广泛用于治理工作面采动裂隙带及采空区瓦斯,而现场实际实施存在一定经验性,影响了高抽巷的瓦斯治理效果。针对现场高抽巷抽采流量低、工作面瓦斯易超限等问题,为提高高抽巷的瓦斯抽采效果,以余吾煤业为例,通过理论计算、现场考察、数值模拟、抽采效果分析,系统地研究了综放面高抽巷抽采瓦斯的布置层位。研究结果表明:综放面顶板冒落带高度约为18 m,裂隙带高度约为40 m,同时结合现场抽采效果分析,高抽巷宜布置在距煤层顶板40 m,与回风顺槽平距30 m处。研究结论对于综放面高抽巷的合理布置、提高瓦斯抽采效果具有一定的借鉴意义。  相似文献   

5.
漏风对煤自燃有重要影响,研究漏风形成机制对工作面采空区防火具有重要的作用。针对采空区瓦斯抽采、上覆围岩裂隙发育对采空区漏风影响问题,以沙曲矿沿空留巷综放工作面为研究背景。根据采空区上覆煤岩特性选择经验公式计算采空区裂隙发育高度,分析了沿空留巷侧采空区上覆裂隙发育,现场实测了沿空留巷压埋管及高位钻孔中气体体积分数,并根据实测参数利用数值模拟分析了瓦斯抽采条件下采空区风流流场变化。结果表明:上覆裂隙成为采空区漏风通道,导通距离在27.2~37.2 m;在沿空留巷侧采空区回采距离100m,其氧气体积分数在10%以上,验证了采空区漏风去向;模拟结果显示,沿空留巷侧采空区立体空间范围内氧气体积分数均达到10%以上,模拟结果与实测基本保持一致。最终确定瓦斯抽采条件下沿空留巷的布置及煤岩裂隙发育是形成漏风通道的主要原因。  相似文献   

6.
以提高瓦斯抽采效果为目标, 某矿Ⅲ4423工作面为研究对象,采用理论分析、 数值模拟、现场试验等研究方法,研究了顶板高位钻孔条件下瓦斯抽采的主要技术参数 ,数值模拟出高位钻孔抽采瓦斯前采空区的瓦斯分布情况与运移规律,以及负压分别为 8、10 kPa时的高位钻孔瓦斯抽采效果。依据瓦斯流动“O”型圈理论与FLUENT数值模拟 分析,优化设计高位钻孔抽采瓦斯工艺参数并进行现场试验。结果表明:当高位钻孔抽 采负压为8 kPa、终孔位置调整到采空区裂隙带回风巷侧15~35 m范围内时,高位钻孔抽 采瓦斯效果最佳,采空区内瓦斯最高浓度明显降低,单个钻场最大抽采瓦斯量为19 821.74 m3,钻孔瓦斯浓度稳定在 20%~30%之间,最大值达到50%,实现了工作面有效 治理瓦斯和安全生产的目标。  相似文献   

7.
为提高厚煤层采空区定向钻孔的瓦斯抽采效率,针对山西某高瓦斯矿井采煤工作面,采用理论分析和FLUENT数值模拟相结合的方法研究采动裂隙分域演化特性,提出覆岩裂隙场分域准则,确定定向钻孔布置区域与核心抽采布置范围,并在采空区现场开展定向钻孔分域抽采瓦斯试验。结果表明:破断裂隙密集区内,岩层断裂穿层裂隙发育较明显、瓦斯聚集显著,且钻孔稳定性高,是布置定向钻孔的最佳区域;并将与回风巷中心线水平距离3~13 m,与煤层顶板垂直距离10~18 m的区域设定为核心抽采区域。定向钻孔分域抽采试验中,单孔抽采瓦斯体积分数平均提升22.355%,单孔瓦斯抽采纯量平均提升1.295 m3/min,该结论验证了厚煤层采空区定向钻孔分域抽采方法的实用性与合理性。  相似文献   

8.
煤与瓦斯共采技术是煤矿绿色开采技术的重要组成部分之一.针对矿井煤层薄、煤层透气性低、煤层瓦斯含量低等特点,应用岩层移动理论和采空区瓦斯流动规律,研究了采场内卸压瓦斯的运移路径和富集区域,建立了矿井煤与瓦斯共采系统,采用了高位顶板穿层钻孔瓦斯抽采方法和老采空区瓦斯抽采方法等综合瓦斯抽采方法,降低了矿井瓦斯涌出量,消除了工作面瓦斯积聚现象,提高了矿井瓦斯抽采率和抽采浓度.在保障煤炭资源安全开采的前提下实现了瓦斯资源的安全、高效抽采.  相似文献   

9.
首采煤层群关键层是消除邻近煤层突出危险性行之有效的方法.以淮南新庄孜煤矿66210工作面为例,在综合分析采空区上覆岩层竖向3带以及瓦斯运移基本条件的基础上,将上被保护层所产生的卸压瓦斯运移路径简化为:被保护层→上覆岩层竖向裂隙→采空区→回风巷.为了保障首采保护层工作面的安全回采,提出并实施了卸压瓦斯综合治理技术,对被保护层卸压瓦斯、首采层顶板裂隙发育区富集瓦斯、采空区瓦斯进行强化拦截抽采.采用沿空留巷Y型通风方式消除上隅角瓦斯积聚,降低风排瓦斯量,工作面回风瓦斯体积分数在0.6%以下,实现了高瓦斯煤层群首采工作面的安全高效生产.  相似文献   

10.
本文以贵州盘江精煤股份有限公司土城矿13125工作面实际为例,对高位被保护层工作面覆岩裂隙演化及瓦斯运移规律进行具体分析,为高位被保护层工作面瓦斯抽采方案的选择提供理论支持。通过现场实施效果表明,以覆岩采动裂隙演化理论与瓦斯运移理论为依据设计的瓦斯抽采方案,抽采率高达64.84%,且开采期间回风巷瓦斯平均浓度控制在0.31%左右,抽采效果非常理想。  相似文献   

11.
为研究高瓦斯易自燃煤层不同供风量、高抽巷抽采流量、低抽巷抽采流量3因素对采空区自燃“三带”分布影响规律,选取阳煤五矿8406工作面为研究对象,在数值模拟研究基础上,采用Design Expert软件进行Box Behnken试验设计,构建采空区氧化升温带宽度在3因素、3水平条件下的二次回归响应曲面模型,并对不同条件下采空区氧化升温带宽度进行预测与分析。结果表明:二次回归方程P值为0.001 6,预测模型显著,模型的失拟项为0.606 3,不显著,回归方程具有统计学意义;当供风量为1 500~2 000 m3/min,低抽流量为450~650 m3/min,高抽流量为100~200 m3/min时,对氧化升温带宽度一次项重要度排序为C(高抽巷抽采流量)>A(供风量)>B(低抽巷抽采流量),二次项重要度排序为AC(供风量和高抽巷抽采流量)>AB(供风量和低抽巷抽采流量)>BC(低抽巷抽采流量和高抽巷抽采流量),且AB,AC,BC之间均无交互作用。  相似文献   

12.
为了研究倾斜特厚煤层综放开采采空区孔隙率分布规律,确定采空区高位钻孔位置,有效治理采空区瓦斯灾害,以硫磺沟煤矿9-15(06)工作面为例,采用UDEC数值模拟软件研究采空区覆岩垮落和裂隙演化规律,根据采空区覆岩下沉量,计算得到采空区孔隙率三维分布规律。研究结果表明:倾斜特厚煤层采空区覆岩位移云图在垂直方向呈3段分布,以距离工作面底板23 m和80 m为分界线,位移矢量密度显著降低,冒落带高度为23 m,与经验公式25 m基本一致,大于薄、中厚和厚煤层;受倾角影响,垮落矸石滑移、充填采空区下端,覆岩下沉量呈非对称椭圆形,中上部下沉量最大;冒落带孔隙率在上、下隅角处最大,中上部最小,随着覆岩高度增加,采空区边缘处和深部孔隙率差值逐渐减小。研究结果为倾斜特厚煤层采空区瓦斯抽采高位钻孔的布置提供了理论基础。  相似文献   

13.
为了实现瓦斯与煤自燃两大灾害的联合防治,首先对布置高抽巷条件下瓦斯与遗煤自燃多因素相互影响关系进行了理论分析和归纳总结。结合淮南潘二煤矿11223高瓦斯易自燃工作面,建立了带有高抽巷的物理模型,利用UDF编译了本煤层与邻近层瓦斯涌出源项、采空区三维孔隙率和低温条件下煤氧化反应氧气消耗速率。在此基础上,分析了高抽巷布置参数和抽采参数以及工作面风量对高抽巷瓦斯抽采效果和采空区自燃带分布相互影响的规律。结果表明,当工作面风量为2 000 m3/min,高抽巷布置在顶板上方40 m时,高抽巷瓦斯抽采浓度和纯量分别达32.3%和29.07 m3/min,占总瓦斯涌出量的69.71%,同时能满足实际防火的要求。研究结果可为类似条件下高抽巷最佳施工与抽采参数提供借鉴。  相似文献   

14.
为了降低平煤十矿己15-16-24130工作面运输巷掘进中的突出危险性,基于实际工程背景,考虑瓦斯抽采中的瓦斯运移及煤岩变形等因素,建立了瓦斯抽采气固耦合模型,并利用COMSOL Multiphysics软件对平煤十矿己15-16煤层的底板巷穿层钻孔瓦斯抽采方案进行数值模拟,研究了瓦斯抽采对于降低掘进过程中突出危险性的影响。研究结果表明:在己18煤层开挖底板巷对己15-16煤层进行穿层钻孔瓦斯抽采,瓦斯抽采180 d后,己15-16-24130工作面运输巷附近煤层残余瓦斯压力及瓦斯含量分别降至0.315 MPa和3.84 m3/t;将底板巷穿层钻孔瓦斯抽采方案进行工程应用,实测抽采后的残余瓦斯压力及瓦斯含量在0.32 MPa和3.17 m3/t,均小于平煤十矿煤与瓦斯突出防治规定的“双6”指标(残余瓦斯压力小于0.6 MPa,残余瓦斯含量小于6 m3/t),可有效降低运输巷掘进过程中的突出危险性。  相似文献   

15.
针对煤层开采后常出现矿压显现剧烈、煤岩透气性增大和地表下沉等问题,利用二维相似模拟试验研究综放工作面覆岩破坏特征并通过分形理论表征裂隙演化规律.试验结果表明:煤层基本顶初次来压步距为78 m,周期来压步距为24 m;煤层采动裂隙发育,距煤层顶板超过35 m;煤层开采后形成的覆岩裂隙具有分形特征,其分形维数随工作面的推进...  相似文献   

16.
在采取瓦斯抽采安全技术措施情况下,针对煤巷掘进难以实现煤层的边掘边抽问题,提出煤巷掘进跨步预抽煤层瓦斯的方法。该方法利用钻场抽采孔在始端汇集末端发散的分布特点,通过钻场沿煤巷掘进方向的前后错位及钻孔布置的优化设计,实现钻孔在工作面前方煤体密集段与分散段的交错重叠,保障煤巷掘进控制区煤体瓦斯的无死角连续抽采及煤巷的持续掘进。现场试验表明:该技术在掘进面前方煤体具有较好的抽采效果,成功实现了煤巷的连续不间断掘进,在煤巷掘进期间未发生工作面瓦斯涌出事故及煤与瓦斯突出征兆。该技术为高瓦斯矿井及按突出矿井管理的煤层实现煤巷的边掘边抽提供了借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号