首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Abstract: The effectiveness of measuring lawn sprinkler application rates using the catch‐can test was evaluated. A survey of sources recommending the catch‐can test for measuring application rates show that catch‐can test procedures differ in the collector type, collector placement, number of collectors, and test duration. Analyses of catch‐can tests were performed to address these procedural differences, with emphasis on the type and number of collectors required to provide a reasonable level of confidence in test results. The accuracy of the catch‐can test generally improves as the number of randomly placed collectors increases. In order to achieve an accuracy of ±25% for 90 out of 100 catch‐can tests, the number of randomly placed collectors required ranged from 6 to over 50 for hand‐move systems, while for in‐ground systems, the number of randomly placed collectors required ranged from 2 to 8, depending on the pressure and percent overlap of the water distribution pattern. As long as a reasonable number of collectors were used when performing a catch‐can test, no consistent differences were observed in catch‐can test results due to type of collectors when using tuna fish cans, soup cans, or coffee mugs.  相似文献   

2.
ABSTRACT: Rapid population growth in the metropolitan area of Denver, Colorado, is causing conflicts over water use. Two cities, Thomton and Westminster, have begun condemnation proceedings against three irrigation companies to secure agricultural water rights for municipal use. This is the first condemnation proceeding against irrigation water rights for municipal use. Should the suit succeed, over 30,000 acres of presently irrigated land will lose its water supply. There are about four hundred landowners in the area; two hundred of these are commercial farmers, including truck, dairy and specialty farms. Total agricultural production amounts to about $8 million per year. About 561 jobs related to agriculture will disappear along with about $4 million in not income. Only 6.4 percent of the farmland along the Front Range is irrigated. Continued urban growth will put pressure on the water supply of much of this land. The interested parties of the region should cooperate to lessen the impact of urban growth on agricultural lands and water by forming a metropolitan water district. Such a district could share costs of development of additional municipal water and develop systems where municipalities would recycle waste water back to the irrigated lands.  相似文献   

3.
ABSTRACT: Forecasts of future urban water demand traditionally have been made by the projection of historic trends in per capita consumption and population. This paper outlines the use of two deterministic models to forecast the residential component of urban water demand. The models incorporate specific representation of the activities which result in water consumption at each residence. Predictions of water use can then be made by modeling the changes expected in the number of these activities and the consumption for each such activity.  相似文献   

4.
    
Water‐use efficiency in the United States (U.S.) has improved in recent years. Yet continued population growth coupled with increasingly conservation‐oriented regulatory frameworks suggest that residential water suppliers will have to realize additional efficiency gains in coming decades. Outdoor water‐use restrictions (OWRs) appear to be an increasingly prevalent demand‐side management policy tool. To date little research has investigated the policy mechanisms that govern OWR adoption and influence the prevalence of OWRs. This article fills this gap with an assessment of state‐level policies influencing local‐level restrictions on residential outdoor water use in each of the 48 contiguous U.S. states, and with a detailed illustration of the cross‐scalar dynamic of one state's policy framework in practice. An examination of the implementation of OWRs in 24 neighboring towns in Massachusetts across the 2003‐2012 period indicates the interplay between state‐level and local‐level policies leads to OWRs implementation over extended time‐periods, even when drought conditions are not present. This finding suggests OWRs are being used as a tool for general‐purpose water conservation rather than as a stopgap measure justified by temporary water shortage conditions. Future research should investigate how local‐level water savings vary with differing state‐level approaches.  相似文献   

5.
    
ABSTRACT: A set of simulation models consisting of a weather generator, and irrigation supply, soil moisture and crop growth components was used to evaluate the impacts of climate change on irrigated corn in locations near Albany, New York, Indianapolis, Indiana, and Oklahoma City, Oklahoma. The models evaluated the combined effects of modified water demand, supply and crop management (planting date, cultivar selection, irrigation). Simulations were duplicated for 100-year weather sequences based on current (1961–1988) weather statistics, and statistics modified by outputs from the GFDL GCM runs showing the effects from doubling of atmospheric CO2. Climate impacts differed greatly with location and management. Effects were most adverse in New York and least damaging in Indiana. At all sites, the beneficial effects of longer growing season and increased water supply were generally overcome by the detrimental impacts of increased evapotranspiration and reduced solar radiation during plant maturing stages. Adverse impacts of climate change can be substantially reduced by irrigation and appropriate selection of planting dates and cultivars.  相似文献   

6.
ABSTRACT: The sensitivity of streamflow to climate change was investigated in the American, Carson, and Truckee River Basins, California and Nevada. Nine gaging stations were used to represent streamflow in the basins. Annual models were developed by regressing 1961–1991 streamflow data on temperature and precipitation. Climate-change scenarios were used as inputs to the models to determine streamflow sensitivities. Climate-change scenarios were generated from historical time series by modifying mean temperatures by a range of +4°C to—4°C and total precipitation by a range of +25 percent to -25 percent. Results show that streamflow on the warmer, lower west side of the Sierra Nevada generally is more sensitive to temperature and precipitation changes than is streamflow on the colder, higher east side. A 2°C rise in temperature and a 25-percent decrease in precipitation results in stream-flow decreases of 56 percent on the American River and 25 percent on the Carson River. A 2°C decline in temperature and a 25-percent increase in precipitation results in streamflow increases of 102 percent on the American River and 22 percent on the Carson River.  相似文献   

7.
    
Abstract: Many municipalities have implemented demand management of outdoor water use. Measures such as restrictions on lawn watering and promotion of xeriscaping are effective in reducing water demand during summer months, especially during dry spells. However, little research examines a key factor shaping the success of these programs: residents’ perceptions of and satisfaction with such conservation measures. This article describes an urban outdoor water conservation program in Guelph, Ontario, assesses that program from the perspective of residents, and explores socio‐economic, attitudinal and other factors associated with residents’ assessment of the program. A survey of Guelph residents revealed broad support for the program, which includes restrictions on various outdoor water uses and, under certain circumstances, a ban on lawn watering. However, there was much uncertainty among residents about the effectiveness of the program in reducing water use and the effectiveness of program enforcement. Key factors influencing residents’ assessment of the program were neighborhood, gender and environmental attitude. Implications for the design and implementation of outdoor water conservation programs are discussed, including the importance of better communication of information on program effectiveness and enforcement.  相似文献   

8.
A multivariate time series model is formulated to study monthly variations in municipal water demand. The left hand side variable in the multivariate regression model is municipal water demand (gallons per connection per day) and the right hand side contains (explanatory) variables which include price (constant dollars), average temperature, total precipitation, and percentage of daylight hours. The application of the regression model to Salt Lake City Water Department data produced a high multiple correlation coefficient and F-statistic. The regression coefficients for the right hand side variables all have the appropriate sign. In an ex post forecast, the model accurately predicts monthly variations in municipal water demand. The proposed monthly multivariate model is not only found useful for forecasting water demand, but also useful for predicting and studying the impact of nonstructural management decisions such as the effect of price changes, peak load pricing methods, and other water conservation programs.  相似文献   

9.
ABSTRACT: During the drought year of 1977, unusually low river flows during the summer caused the City of Fort Collins, Colorado, to institute lawn watering restrictions for six weeks as a conservation measure. Water use during the restriction period decreased 41 percent below the previous year. The effectiveness of the restrictions, however, has been unclear because abnormally wet weather also appeared to reduce evapotranspiration rates during the period the restrictions were in effect. The statistical analysis indicates that the reduction in water use due to lawn watering restrictions was 603 acre-feet and that abnormal weather reduced use by an additional 659 acre-feet during the same period. During a period of normal evapotranspiration rates, such restrictions would be expected to reduce Fort Collins municipal water usage by 19.7 percent.  相似文献   

10.
ABSTRACT: Selective placement - under a rigorous statistical sampling design - of newly available monitoring equipment on irrigation systems may provide effective and economical estimates of total irrigation water use in areas where complete water use inventories are impractical. In 1979, a joint effort by the U.S. Geological Survey and Florida's Suwannee River Water Management District was launched to estimate the District's 1979 irrigation water use using a selective monitoring approach. Analysis of previous inventories of irrigation equipment and amounts of water applied in the District indicated that total 1979 water use estimates with six to nine percent sampling error could be obtained using selective monitoring, given the time and equipment limitations for the monitoring program. Restricting monitoring to a sample of farms can introduce systematic error to water use estimates if farmers' participation is related to their water use methods. Preliminary results of the 1979 study indicate tht declining participation rates, if unchecked, could lead to serious systematic eror in future North Florida selective monitoring studies.  相似文献   

11.
ABSTRACT: Given limited available data and the present state of knowledge on the social aspects of irrigation, there is a need to develop new quantitative methods to measure water management performance in large-scale systems. A qualitative response framework is adapted to formulate a dynamic logit model of weekly field water adequacy and quantify indirectly farmer water utilization. Model parameters are estimated in a weighted least-squares regression using four seasons of data from a Philippine canal system. Estimated coefficients and independent model forecasts indicate greater effective use of rainfall than irrigation in sustaining high levels of water adequacy during the rainy season. Irrigation utilization is two times higher in the dry season, while system location has a much smaller but still significant impact. Utilization rates for both rain and irrigation showed considerable responsiveness to the prevailing scarcity of water. The qualitative response approach is well suited to the aggregated data available for large-scale systems, and allows advances in modeling dynamic water management behavior. Formal evaluation of the model will require further empirical applications.  相似文献   

12.
    
The High Plains Aquifer (HPA) underlies parts of eight states and 208 counties in the central area of the United States (U.S.). This region produces more than 9% of U.S. crops sales and relies on the aquifer for irrigation. However, these withdrawals have diminished the stock of water in the aquifer. In this paper, we investigate the aggregate county‐level effect on the HPA of groundwater withdrawal for irrigation, of climate variables, and of energy price changes. We merge economic theory and hydrological characteristics to jointly estimate equations describing irrigation behavior and a generalized water balance equation for the HPA. Our simple water balance model predicts, at average values for irrigation and precipitation, an HPA‐wide average decrease in the groundwater table of 0.47 feet per year, compared to 0.48 feet per year observed on average across the HPA during this 1985–2005 period. The observed distribution and predicted change across counties is in the (?3.22, 1.59) and (?2.24, 0.60) feet per year range, respectively. The estimated impact of irrigation is to decrease the water table by an average of 1.24 feet per year, whereas rainfall recharges the level by an average of 0.76 feet per year. Relative to the past several decades, if groundwater use is unconstrained, groundwater depletion would increase 50% in a scenario where precipitation falls by 25% and the number of degree days above 36°C doubles. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

13.
    
Quantifying surface water shortages in arid and semiarid agricultural regions is challenging because limited water supplies are distributed over long distances based on complex water management systems constrained by legal, economic, and social frameworks that evolve with time. In such regions, the water supply is often derived in a climate dramatically different from where the water is diverted to meet agricultural demand. The existing drought indices which rely on local climate do not portray the complexities of the economic and legal constraints on water delivery. Nor do these indices quantify the shortages that occur in drought. Therefore, this research proposes a methodological approach to define surface water shortages in irrigated agricultural systems using a newly developed index termed the Surface Water Delivery Index (SWDI). The SWDI can be used to uniformly quantify surface water deficits/shortages at the end of the irrigation season. Results from the SWDI clearly illustrate how water shortages in droughts identified by the existing indices (e.g., SPI and PDSI) vary strongly both within and between basins. Some surface water entities are much more prone to water shortages than other entities based both on their source of water supply and water right portfolios.  相似文献   

14.
    
There is an increasing need to strategize and plan irrigation systems under varied climatic conditions to support efficient irrigation practices while maintaining and improving the sustainability of groundwater systems. This study was undertaken to simulate the growth and production of soybean [Glycine max (L.)] under different irrigation scenarios. The objectives of this study were to calibrate and validate the CROPGRO‐Soybean model under Texas High Plains’ (THP) climatic conditions and to apply the calibrated model to simulate the impacts of different irrigation levels and triggers on soybean production. The methodology involved combining short‐term experimental data with long‐term historical weather data (1951–2012), and use of mechanistic crop growth simulation algorithms to determine optimum irrigation management strategies. Irrigation was scheduled based on five different plant extractable water levels (irrigation threshold [ITHR]) set at 20%, 35%, 50%, 65%, and 80%. The calibrated model was able to satisfactorily reproduce measured leaf area index, biomass, and evapotranspiration for soybean, indicating it can be used for investigating different strategies for irrigating soybean in the THP. Calculations of crop water productivity for biomass and yield along with irrigation water use efficiency indicated soybean can be irrigated at ITHR set at 50% or 65% with minimal yield loss as compared to 80% ITHR, thus conserving water and contributing toward lower groundwater withdrawals. Editor's note: This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

15.
ABSTRACT: In the current forecasting practice, future water requirements of a growing urban area are often represented as the product of the number of people to be served by the water system and an assumed quantity of gross per capita water use. This paper describes a forecasting approach that differs from the per capita method in two important aspects. First, it disaggregates urban water use into a large number of categories, each consisting of a relatively homogeneous group of water users. Second, it links water use in each category to factors that determine both the need for water as well as the intensity of water use. This approach is incorporated into a computerized forecasting system referred to as IWR-MAIN. The advantages of the IWR.MAIN model over the traditional per capita method are illustrated in a case study of Anaheim, California.  相似文献   

16.
ABSTRACT: Irrigated agriculture is one of the most important water-use sectors in terms of total water diversion and consumptive use. For at least the last 25 years, improving irrigation efficiency has been a widely advocated and accepted goal. This paper uses a sample of 16 Bureau of Reclamation irrigation projects to examine the pattern of average irrigation efficiency and change in efficiency over time. In general, the highest average efficiencies are found in the arid Southwest while the lowest are found in the semi-arid to sub-humid Great Plains region. Over the 22-year period of analysis, there has been no observable trend toward improvement in efficiency at any of the projects.  相似文献   

17.
During the 1976–77 drought, three principal mechanisms were used to reduce water use in Utah communities: price increases, maximum monthly use restrictions, and restrictions on outdoor watering times. A regression model was developed to explain observed changes in water use, with price, type of restriction, household size, and summer rainfall as independent variables. For an average system, a 1 percent increase in price would reduce water use by 0.07 to 0.09 percent. A 1 percent increase in outdoor watering time restriction reduces use by 0.064 to 0.075 percent. A 1 percent increase in quantity restrictions leads to a reduction in water use of 0.014 to 0.054 percent. The effectiveness of rationing policies is influenced by system characteristics. For example, outdoor watering time restrictions were less effective in systems with above average household size and below average monthly use.  相似文献   

18.
ABSTRACT: A cascade model for forecasting municipal water use one week or one month ahead, conditioned on rainfall estimates, is presented and evaluated. The model comprises four components: long term trend, seasonal cycle, autocorrelation and correlation with rainfall. The increased forecast accuracy obtained by the addition of each component is evaluated. The City of Deerfield Beach, Florida, is used as the application example with the calibration period from 1976–1980 and the forecast period the drought year of 1981. Forecast accuracy is measured by the average absolute relative error (AARE, the average absolute value of the difference between actual and forecasted use, divided by the actual use). A benchmark forecast is calculated by assuming that water use for a given week or month in 1981 is the same as the average for the corresponding period from 1976 to 1980. This method produces an AARE of 14.6 percent for one step ahead forecasts of monthly data and 15.8 percent for weekly data. A cascade model using trend, seasonality and autocorrelation produces forecasts with AARE of about 12 percent for both monthly and weekly data while adding a linear relationship of water use and rainfall reduces the AARE to 8 percent in both cases if it is assumed that rainfall is known during the forecast period. Simple rainfall predictions do not increase the forecast accuracy for water use so the major utility of relating water use and rainfall lies in forecasting various possible water use sequences conditioned on sequences of historical rainfall data.  相似文献   

19.
    
ABSTRACT: Watersheds above the Miyun reservoir, a principal source of surface water for Beijing, are designated to be managed for water production, but under the principle of multiple use. Because of the scarcity of arable land, these watersheds cannot be managed only for drinking water. Efforts are under way to reduce sediment delivery, improve the quality of water entering Miyun reservoir, and improve the welfare of watershed inhabitants. An economic appraisal of a watershed management project for the 3,298‐ha Shixia watershed above the Miyun reservoir, indicates a 24 percent economic rate of return on the investment made in the project. The net present value (NPV) of the project, calculated at a discount rate of 10 percent, is approximately US$3.49 million. Sensitivity analyses indicate that a doubling of labor costs lowers the NPV to US$2.07 million and a 10 percent decrease in benefits lowered the NPV to US$2.87. It is concluded that the implementation of conservation practices on the Shixia Demonstration Watershed represent an economically efficient use of resources.  相似文献   

20.
    
Population growth in the Southeast has driven withdrawals for municipal water beyond the limits of local supplies. With few options left for development of virgin sources, a number of urban areas are looking toward demand management and additional supplies by reallocating storage in reservoirs that were built primarily or in part for hydropower. Hydropower has become a lesser part of the mix of energy sources, and the question arises as to value of water for that purpose relative to its value for municipal use. Three cases are used to examine the issue. Effects of withdrawal for municipal water supply on output of electric energy are estimated. Benefits of foregone energy are evaluated using the least cost alternative for replacement, and benefits for municipal water are estimated using costs for development of new sources. Benefits for use as municipal water are found to be considerably higher than benefits for hydroelectric energy at existing prices, even higher than the least cost alternative for replacement. Given the spatial distribution of the cases, that finding would appear to hold in general across the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号