首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Devils Lake is an endorheic lake in the Red River of the North basin in northeastern North Dakota. During the last two decades, the lake water level has risen by nearly 10 m, causing floods that have cost more than 1 billion USD in mitigation measures. Another increase of approximately 1.5 m in the lake water level would cause spillage into the Sheyenne River. To alleviate this potentially catastrophic spillage, two artificial outlets were constructed. However, the artificial drainage of water into the Sheyenne River raises water quality concerns because the Devils Lake water contains significantly higher concentrations of dissolved solids, particularly sulfate. In this study, the Soil and Water Assessment Tool (SWAT) was coupled with the CE‐QUAL‐W2 model to simulate both water balance and sulfate concentrations in the lake. The SWAT model performed well in simulating daily flow in tributaries with ENS > 0.5 and |PBIAS| < 25%, and reproduced the lake water level with a root mean square error of 0.35 m for the study period from 1995 to 2014. The water temperature and sulfate concentrations simulated by CE‐QUAL‐W2 for the lake are in general agreement with the field observations. The model results show that the operation of the two outlets since August 2005 has lowered the lake level by 0.70 m. Furthermore, the models show pumping water from the two outlets raises sulfate concentrations in the Sheyenne River from ~100 to >500 mg/L. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

2.
Terminal lakes are impacted by regional changes in climate. Devils Lake (DL), North Dakota, United States (U.S.), is a case in which a prolonged shift in the precipitation pattern resulted in a 10‐m water‐level rise over the past two decades, which cost over one billion U.S. dollars in mitigation. Currently, DL is 1.5 m from an uncontrolled overspill to the nearby Sheyenne River, which could lead to unprecedented environmental, social, and economic costs. Water outlets recently implemented in the lake to slow the water‐level rise and prevent an uncontrolled overspill are subject to significant concerns over the introduction of invasive species and downstream water quality. We developed a hydrological model of the DL basin using the soil and water assessment tool and analyzed DL's overspill probability using an ensemble of statistically downscaled General Circulation Model (GCM) projections of the future climate. The results indicate a significant likelihood (7.3‐20.0%) of overspill in the next few decades in the absence of outlets; some members of the GCM integration ensemble suggest an exceedance probability of over 85.0 and 95.0% for the 2020s and 2050s, respectively. Full‐capacity outlets radically reduce the probability of DL overspill and are able to partially mitigate the problem by decreasing the average lake level by approximately 1.9 and 1.5 m in the 2020s and 2050s, respectively.  相似文献   

3.
Devils Lake, located in a closed basin in northeastern North Dakota has over a century-long history of highly fluctuating water levels. The lake has risen nearly 25 feet (7.7 m) since 1993, more than doubling its surface area. Rising water levels have affected rural lands, transportation routes, and communities near the lake. In response to rising lake levels, Federal, state and local agencies have adopted a three-part approach to flood damage reduction, consisting of (1) upper basin water management to reduce the amount of water reaching the lake, (2) protection for structures and infrastructure if the lake continues to rise, and (3) developing an emergency outlet to release some lake water. The purpose of this study was to provide information about the net regional economic effects of a proposed emergency outlet for Devils Lake. An input-output model was used to estimate the regional economic effects of the outlet, under two scenarios: (1) the most likely future situation (MLS) and (2) a best case situation (BCS) (i.e., where the benefits from the outlet would be greatest), albeit an unlikely one. Regional economic effects of the outlet include effects on transportation (road and railroad construction), agriculture (land kept in production, returned to production sooner, or kept in production longer), residential relocations, and outlet construction expenditures. Effects are measured as changes in gross business volume (gross receipts) for various sectors, secondary employment, and local tax collections. The net regional economic effects of the proposed outlet would be relatively small, and consideration of these economic impacts would not strengthen the case for an outlet.  相似文献   

4.
This study is to evaluate the future potential impact of climate change on the water quality of Chungju Lake using the Water Quality Analysis Simulation Program (WASP). The lake has a storage capacity of 2.75 Gm3, maximum water surface of 65.7 km2, and forest‐dominant watershed of 6,642 km2. The impact on the lake from the watershed was evaluated by the Soil and Water Assessment Tool (SWAT). The WASP and SWAT were calibrated and validated using the monthly water temperatures from 1998 to 2003, lake water quality data (dissolved oxygen, total nitrogen [T‐N], total phosphorus [T‐P], and chlorophyll‐a [chl‐a]) and daily dam inflow, and monthly stream water quality (sediment, T‐N, and T‐P) data. For the future climate change scenario, the MIROC3.2 HiRes A1B was downscaled for 2020s, 2050s, and 2080s using the Change Factor statistical method. The 2080s temperature and precipitation showed an increase of +4.8°C and +34.4%, respectively, based on a 2000 baseline. For the 2080s watershed T‐N and T‐P loads of up to +87.3 and +19.6%, the 2080s lake T‐N and T‐P concentrations were projected to be 4.00 and 0.030 mg/l from 2.60 and 0.016 mg/l in 2000, respectively. The 2080s chl‐a concentration in the epilimnion and the maximum were 13.97 and 52.45 μg/l compared to 8.64 and 33.48 μg/l in 2000, respectively. The results show that the Chungju Lake will change from its mesotrophic state of 2000 to a eutrophic state by T‐P in the 2020s and by chl‐a in the 2080s. Editor's note: This paper is part of a featured series on Korean Hydrology. The series addresses the need for a new paradigm of river and watershed management for Korea due to climate and land use changes.  相似文献   

5.
Phosphorus export coefficients (kg/ha/yr) from selected land covers, also called phosphorus yields, tend to get smaller as contributing areas get larger because some of the phosphorus mobilized on local fields gets trapped during transport to regional watershed outlets. Phosphorus traps include floodplains, wetlands, and lakes, which can then become impaired by eutrophication. The Sunrise River watershed in east central Minnesota, United States, has numerous lakes impaired by excess phosphorus. The Sunrise is tributary to the St. Croix River, whose much larger watershed is terminated by Lake St. Croix, also impaired by excess phosphorus. To support management of these impairments at both local and regional scales, a Soil and Water Assessment Tool (SWAT) model of the Sunrise watershed was constructed to estimate load reductions due to selected best management practices (BMPs) and to determine how phosphorus export coefficients scaled with contributing area. In this study, agricultural BMPs, including vegetated filter strips, grassed waterways, and reduction of soil‐phosphorus concentrations reduced phosphorus loads by 4‐20%, with similar percentage reductions at field and watershed spatial scales. Phosphorus export coefficients from cropland in rotation with corn, soybeans, and alfalfa decreased as a negative power function of contributing area, from an average of 2.12 kg/ha/yr at the upland field scale (~0.6 km2) to 0.63 kg/ha/yr at the major river basin scale (20,000 km2). Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

6.
This study analyzed changes in hydrology between two recent decades (1980s and 2010s) with the Soil and Water Assessment Tool (SWAT) in three representative watersheds in South Dakota: Bad River, Skunk Creek, and Upper Big Sioux River watersheds. Two SWAT models were created over two discrete time periods (1981‐1990 and 2005‐2014) for each watershed. National Land Cover Datasets 1992 and 2011 were, respectively, ingested into 1981‐1990 and 2005‐2014 models, along with corresponding weather data, to enable comparison of annual and seasonal runoff, soil water content, evapotranspiration (ET), water yield, and percolation between these two decades. Simulation results based on the calibrated models showed that surface runoff, soil water content, water yield, and percolation increased in all three watersheds. Elevated ET was also apparent, except in Skunk Creek watershed. Differences in annual water balance components appeared to follow changes in land use more closely than variation in precipitation amounts, although seasonal variation in precipitation was reflected in seasonal surface runoff. Subbasin‐scale spatial analyses revealed noticeable increases in water balance components mostly in downstream parts of Bad River and Skunk Creek watersheds, and the western part of Upper Big Sioux River watershed. Results presented in this study provide some insight into recent changes in hydrological processes in South Dakota watersheds. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

7.
ABSTRACT: Soil data comprise a basic input of SWAT (Soil and Water Assessment Tool) for a watershed application. For watersheds where site specific soil data are unavailable, the two U.S. Department of Agriculture (USDA) soil databases, the State Soil Geographic (STATSGO) and Soil Survey Geographic (SSURGO) databases, may be the best alternatives. Although it has been noted that SWAT models using the STATSGO and SSURGO data may give different simulation results for water, sediment, and agricultural chemical yields, information is scarce on the effects of using these two databases in predicting streamflows that are predominantly generated from melting snow in spring. The objective of this study was to assess the effects of using STATSGO versus SSURGO as an input for the SWAT model's simulation of the streamflows in the upper 45 percent of the Elm River watershed in eastern North Dakota. Designating the model as SWAT‐STATSGO when the STATSGO data were used and SWAT‐SSURGO when the SSURGO data were used, SWAT‐STATSGO and SWAT‐SSURGO were separately calibrated and validated using the observed daily streamflows. The results indicated that SWAT‐SSURGO provided an overall better prediction of the discharges than SWAT‐STATSGO, although both did a good and comparable job of predicting the high streamflows. However, SWAT‐STATSGO predicted the low streamflows more accurately and had a slightly better performance during the validation period. In addition, the discrepancies between the discharges predicted by these two SWAT models tended to be larger at upstream locations than at those farther downstream within the study area.  相似文献   

8.
The lower Missouri River Basin has experienced increasing streamflow and flooding events, with higher risk of extreme hydrologic impacts under changing climate. The newly available North American Regional Climate Change Assessment Program (NARCCAP) climate projections were used as atmospheric forcing for Soil and Water Assessment Tool (SWAT) model which runs with varying potential evapotranspiration (PET) methods to assess the hydrological change and uncertainty of 2040‐2069 over 1968‐1997. The NARCCAP temperature and precipitation predictions were refined using a bias correction method. The results show that, following the seasonal variability of precipitation, various water fluxes would increase in most seasons except the summer. Expected precipitation tends to increase in intensity with little change in frequency, triggering faster surface water concentration to form floods. The greatest streamflow increase would occur from November to February, increasing by around 10% on average. An increase of 3% occurs in the other months except for July and August in which river discharge decreases by around 2%. The climate predictions contribute more uncertainty annually, but PET algorithms gain more influence in winter or when other weather factors such as wind play a relatively more important role on evapotranspiration flux. This study predicts an even wetter environment compared to the historically very wet period, with the possibility of more flooding.  相似文献   

9.
The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed.  相似文献   

10.
Direct ground water seepage measurements were made in Lake Washington, Florida, to determine the importance of seepage as a water and chloride source to the lake and upper St. Johns River. Over 200 seepage measurements were made in the lake and adjoining canals from July through December 1978. Results indicated that seepage into the shore areas of Lake Washington was an insignificant water source to the lake, representing 0.6 percent of the inputs, and was nearly balanced by ground water recharge in the midlake region. Drainage canals entering Lake Washington, however, exhibited high average seepage rates (17.7 L/m2-day), over eight times the lake average (2.01 L/M2-day). Discharge from the St. Johns River was the dominant factor in the water budget of Lake Washington and represented approximately 88 percent of the inputs during the study year. Although inputs from the drainage canals represented only 6.6 percent of the St. Johns River annual discharge, these canals represented 20.4 percent of the annual St. Johns River chloride loading and 62.1 percent of the river chloride loading during the five driest months of 1978. Evidence from this study indicates that rising levels of chloride in the river in recent years are largely attributable to ground water seepage in channelized areas, particularly in the headwaters. These chloride inputs assume greater importance during low water/low flow periods.  相似文献   

11.
We compiled Secchi depth, total phosphorus, and chlorophyll a (Chla) data from Voyageurs National Park lakes and compared datasets before and after a new water‐level management plan was implemented in January 2000. Average Secchi depth transparency improved (from 1.9 to 2.1 m, = 0.020) between 1977‐1999 and 2000‐2011 in Kabetogama Lake for August samples only and remained unchanged in Rainy, Namakan, and Sand Point Lakes, and Black Bay in Rainy Lake. Average open‐water season Chla concentration decreased in Black Bay (from an average of 13 to 6.0 μg/l, = 0.001) and Kabetogama Lake (from 9.9 to 6.2 μg/l, = 0.006) between 1977‐1999 and 2000‐2011. Trophic state index decreased significantly in Black Bay from 59 to 51 (= 0.006) and in Kabetogama Lake from 57 to 50 (= 0.006) between 1977‐1999 and 2000‐2011. Trophic state indices based on Chla indicated that after 2000, Sand Point, Namakan, and Rainy Lakes remained oligotrophic, whereas eutrophication has decreased in Kabetogama Lake and Black Bay. Although nutrient inputs from inflows and internal sources are still sufficient to produce annual cyanobacterial blooms and may inhibit designated water uses, trophic state has decreased for Kabetogama Lake and Black Bay and there has been no decline in lake ecosystem health since the implementation of the revised water‐level management plan.  相似文献   

12.
This study simulated crop and water yields in the Missouri River Basin (MRB; 1,371,000 km2), one of the largest river basins in the United States, using the Soil and Water Assessment Tool (SWAT) at a fine resolution of 12‐digit Hydrological Unit Codes (HUCs) using the regionalization calibration approach. Very few studies have simulated the entire MRB, and those that have developed were at a coarser resolution of 8‐digit HUCs and were minimally calibrated. The MRB was first divided into three subbasins and was further divided into eleven regions. A “head watershed” was selected in each region and was calibrated for crop and water yields. The parameters from the calibrated head watershed were extrapolated to other subwatersheds in the region to complete comprehensive spatial calibration. The simulated crop yields at the head watersheds were in close agreement with observed crop yields. Spatial validation of the aggregated crop yields resulted in reasonable predictions for all crops except dryland corn in a few regions. Simulated and observed water yields in head watersheds and also in the validation locations were in close agreement in naturalized streams and poor agreement in streams with high groundwater‐surface water interactions and/or reservoirs found upstream of the gauges. Overall, the SWAT model was able to reasonably capture the hydrological and crop growth dynamics occurring in the basin despite some limitations.  相似文献   

13.
Water extraction from dryland rivers is often associated with declines in the health of river and floodplain ecosystems due to reduced flooding frequency and extent of floodplain inundation. Following moderate flooding in early 2008 in the Narran River, Murray-Darling Basin, Australia, 10,423 ML of water was purchased from agricultural water users and delivered to the river to prolong inundation of its terminal lake system to improve the recruitment success of colonial waterbirds that had started breeding in response to the initial flooding. This study examined the spatial and temporal patterns of fish assemblages in river and floodplain habitats over eight months following flooding to assess the possible ecological benefits of flood extension. Although the abundances of most fish species were greater in river channel habitats, the fish assemblage used floodplain habitats when inundated. Young-of-the-year (4–12 months age) golden perch (Macquaria ambigua) and bony bream (Nematalosa erebi) were consistently sampled in floodplain sites when inundated, suggesting that the floodplain provides rearing habitat for these species. Significant differences in the abundances of fish populations between reaches upstream and downstream of a weir in the main river channel indicates that the effectiveness of the environmental water release was limited by restricted connectivity within the broader catchment. Although the seasonal timing of flood extension may have coincided with sub-optimal primary production, the use of the environmental water purchase is likely to have promoted recruitment of fish populations by providing greater access to floodplain nursery habitats, thereby improving the ability to persist during years of little or no flow.  相似文献   

14.
ABSTRACT: The conspicuous shifts in summertime values of common measures of water qualify that have persisted for 10 years (1993 to 2002) in the Seneca River, New York, as a result of the zebra mussel invasion are documented. Resolution of patterns in time and space is supported by water quality monitoring that extends back to the late 1970s. Patterns are evaluated to describe the stability of impacts and quantify metabolic activity of the invader. The water quality impacts that have persisted unabated for 10 years since the invasion are the most severe documented for a river in North America. Changes in summer median conditions since the invasion include: (1) a 16‐fold decrease in chlorophyll concentration (Chi), (2) a 2.5‐fold increase in Secchi disc transparency, (3) a 17‐fold increase in soluble reactive phosphorus concentration, (4) a 3.7‐fold increase in total ammonia concentration, (5) a greater than 25 percent decrease in dissolved oxygen (DO) concentration, and (6) a decrease in pH of 0.55 units. The strength of these signatures has been driven by anthropogenic influences that include upstream nutrient loading and morphometric modifications of the river, and the functioning of Cross Lake, through which the river flows. This hypereutrophic lake sustains dense zebra mussel populations and related water quality impacts in the river downstream of the lake outflow by acting as a source of veligers and suitable food for this bivalve. Evidence is presented that levels of metabolic activity of the zebra mussel in this river have been resource limited, manifested through increased consumption of Chl and DO with increased delivery of these constituents in the lake's outflow.  相似文献   

15.
Lake eutrophication problems have received considerable attention in Taiwan, especially because they relate to the quality of drinking water. In this study, steady-state river water quality and lake eutrophication models are solved using dynamic programming algorithms to find the nutrient removal rates for eutrophication control during dry season. The kinetic cycle of chlorophyll-a, phosphorus and nitrogen for a complete-mixed lake is considered in the optimization framework. The Newton-iterative technique is adopted to solve the nonlinear equations for the steady-state lake eutrophication model. The optimization framework is applied to Cheng-Ching Lake in southern Taiwan. Several nutrient loading scenarios for eutrophication control are studied. Optimization results for nutrient removal rates and corresponding wastewater treatment capacities of each reach of the Kao-Ping River define the least cost approach to lake eutrophication control. A natural purification method, structural free water surface wetland, is also suggested to save more investment and improve river water quality at the same time.  相似文献   

16.
We performed two‐dimensional (2D) hydrodynamic modeling to aid recovery of the endangered razorback sucker (Xyrauchen texanus) by reconnecting the Green River with its historic bottomland floodplain wetlands at Ouray National Wildlife Refuge, Utah. Reconnection allows spring flood flows to overtop the river levee every two to three years, and passively transport razorback sucker larvae to the wetlands to grow in critical habitat. This study includes (1) river hydrologic analysis, (2) simulation of a levee breach/weir, overtopping of river flood flows, and 2D flow through the wetlands using Hydrologic Engineering Center River Analysis System 2D, and (3) modeling flow and restoration scenarios. Indicators of hydrologic alteration were used to evaluate river flow metrics, in particular flood magnitudes, frequency, and duration. Results showed a target spring flow of 16,000 cfs (453 m3/s) and a levee breach elevation of 4,663 ft (1,421 m) amsl would result in a median flow >6,000 acre‐feet (7.4 million m3) over five days into the wetlands, which is adequate for razorback sucker larvae transport and rearing. Modeling of flow/restoration scenarios showed using gated water control structures and passive low‐water crossings between wetland units can provide adequate control of flow movement into and storage in multiple units. Levee breaching can be a relatively simple, cost‐effective method to reconnect rivers and historic floodplains, and hydrodynamic modeling is an important tool for analyzing and designing wetland reconnection.  相似文献   

17.
This article presents SWATMOD‐Prep, a graphical user interface that couples a SWAT watershed model with a MODFLOW groundwater flow model. The interface is based on a recently published SWAT‐MODFLOW code that couples the models via mapping schemes. The spatial layout of SWATMOD‐Prep guides the user through the process of importing shape files (sub‐basins, hydrologic response units [HRUs], river network) from an existing SWAT model, creating a grid, performing necessary geo‐processing operations to link the models, writing out SWAT‐MODFLOW files, and running the simulation. The option of creating a new single‐layer MODFLOW model for near‐surface alluvial aquifers is available, with the user prompted to provide groundwater surface elevation (through a digital elevation model), aquifer thickness, and necessary aquifer parameter values. The option of simulating nitrate transport in the aquifer also is available, using the reactive transport model RT3D. The interface is in the public domain. It is programmed in Python, with various software packages used for geo‐processing operations (e.g., selection, intersection of rasters) and inputting/outputting data, and is written for Windows. The use of SWATMOD‐Prep is demonstrated for the Little River Experimental Watershed, Georgia. SWATMOD‐Prep and SWAT‐MODFLOW executables are available with an accompanying user's manual at: http://swat.tamu.edu/software/swat-modflow/ . The user's manual also accompanies this article as Supporting Information.  相似文献   

18.
Devils lake emergency outlet diversion conflict   总被引:1,自引:0,他引:1  
The Devils Lake Emergency Outlet Diversion conflict is systematically studied from a strategic viewpoint using the Graph Model for Conflict Resolution in order to obtain insights about the resolution of this nagging international dispute. By modelling the conflict for the situation existing as of July 2005, just before the project began operation, the dispute is put into proper perspective and, subsequently, a stability analysis is carried out to obtain potential resolutions or equilibria. The results of a sensitivity analysis accurately predict the deal which actually took place when Canada and the American state of North Dakota reached a negotiated settlement. Finally, suggestions are put forward for improving the Boundary Waters Treaty of 1909 between Canada and the United States.  相似文献   

19.
Abstract: An artificial neural network (ANN) provides a mathematically flexible structure to identify complex nonlinear relationship between inputs and outputs. A multilayer perceptron ANN technique with an error back propagation algorithm was applied to a multitime-scale prediction of the stage of a hydro-logically closed lake, Devils Lake (DL), and discharge of the Red River of the North at Grand Forks station (RR-GF) in North Dakota. The modeling exercise used 1 year (2002), 5 years (1998–2002), and 27 years (1975–2002) of data for the daily, weekly, and monthly predictions, respectively. The hydrometeorological data (precipitations P(t), P(t-1), P(t-2), P(t-3), antecedent runoff/lake stage R(t-1) and air temperature T(t) were partitioned for training and for testing to predict the current hydro-graph at the selected DL and RR-GF stations. Performance of ANN was evaluated using three combinations of daily datasets (Input I = P(t)), P(t-l), P(t-2), P(t-3), T(t) and R(t-l); Input II = Input-l less P(t) P(t-l), P(t-2), P(t-3); and Input III = Input-II less T(t)). Comparison of the model output using Input I data with the observed values showed average testing prediction efficiency (E) of 86 percent for DL basin and 46 percent for RR-GF basin, and higher efficiency for the daily than monthly simulations.  相似文献   

20.
The source of the Richelieu River is Lake Champlain, located between the states of New York, Vermont, and Québec. In 2011, the lake and the Richelieu River reached historical flood levels, raising questions about the influence of climate change on the watershed. The objectives of this work are to model the hydrology of the watershed, construct a reservoir model for the lake and to analyze flooding trends using climate simulations. The basin was modeled using the HSAMI lumped conceptual model from Hydro‐Québec with a semi‐distributed approach in order to estimate the inflows into Lake Champlain. The discharge at the Richelieu River was computed by using a mass balance equation between the inputs and outputs of Lake Champlain. Future trends were estimated over the 2041‐2070 and 2071‐2100 periods using a large number of outputs from general circulation models and regional climate models downscaled with constant scaling and daily translation methods. While there is a certain amount of uncertainty as to future trends, there is a decreasing tendency in the magnitude of the mean spring flood. A flood frequency analysis showed most climate projections indicate the severity of most extreme spring floods may be reduced over the two future periods although results are subject to a much larger uncertainty than for the mean spring flood. On the other hand, results indicate summer‐fall extreme events such as caused by hurricane Irene in August 2011 may become more frequent in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号