首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
废物处理   2篇
  2009年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Methane oxidation was studied at a closed boreal landfill (area 3.9 ha, amount of deposited waste 200,000 tonnes) equipped with a passive gas collection and distribution system and a methane oxidative top soil cover integrated in a European Union landfill directive-compliant, multilayer final cover. Gas wells and distribution pipes with valves were installed to direct landfill gas through the water impermeable layer into the top soil cover. Mean methane emissions at the 25 measuring points at four measurement times (October 2005–June 2006) were 0.86–6.2 m3 ha?1 h?1. Conservative estimates indicated that at least 25% of the methane flux entering the soil cover at the measuring points was oxidized in October and February, and at least 46% in June. At each measurement time, 1–3 points showed significantly higher methane fluxes into the soil cover (20–135 m3 ha?1 h?1) and methane emissions (6–135 m3 ha?1 h?1) compared to the other points (<20 m3 ha?1 h?1 and <10 m3 ha?1 h?1, respectively). These points of methane overload had a high impact on the mean methane oxidation at the measuring points, resulting in zero mean oxidation at one measurement time (November). However, it was found that by adjusting the valves in the gas distribution pipes the occurrence of methane overload can be to some extent moderated which may increase methane oxidation. Overall, the investigated landfill gas treatment concept may be a feasible option for reducing methane emissions at landfills where a water impermeable cover system is used.  相似文献   
2.
The residual fraction of mechanically-biologically treated municipal solid waste (MBT residual) was studied in the laboratory to evaluate its suitability and environmental compatibility as a support medium in methane (CH(4)) oxidative biocovers for the mitigation of greenhouse gas emissions from landfills. Two MBT residuals with 5 and 12 months total (aerobic) biological stabilisation times were used in the study. MBT residual appeared to be a favourable medium for CH(4) oxidation as indicated by its area-based CH(4) oxidation rates (12.2-82.3 g CH(4) m(-2) d(-1) at 2-25 degrees C; determined in CH(4)-sparged columns). The CH(4) oxidation potential (determined in batch assays) of the MBT residuals increased during the 124 d column experiment, from <1.6 to a maximum of 104 microg CH(4) g(dw)(-1) h(-1) (dw=dry weight) at 5 degrees C and 578 microg CH(4) g(dw)(-1) h(-1) at 23 degrees C. Nitrous oxide (N(2)O) production in MBT residual (<15 microg N(2)O kg(dw)(-1) d(-1) in the CH(4) oxidative columns) was at the lower end of the range of N(2)O emissions reported for landfills and non-landfill soils, and insignificant as a greenhouse gas source. Also, anaerobic gas production (25.6 l kg(dw)(-1) during 217 d) in batch assays was low, indicating biological stability of the MBT residual. The electrical conductivities (140-250 mS m(-1)), as well as the concentrations of zinc (3.0 mg l(-1)), copper (0.5 mg l(-1)), arsenic (0.3 mg l(-1)), nickel (0.1 mg l(-1)) and lead (0.1 mg l(-1)) in MBT residual eluates from a leaching test (EN-12457-4) with a liquid/solid (L/S) ratio of 10:1, suggest a potential for leachate pollutant emissions which should be considered in plans to utilise MBT residual. In conclusion, the laboratory experiments suggest that MBT residual can be utilised as a support medium for CH(4) oxidation, even at low temperatures, to mitigate greenhouse gas emissions from landfills.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号