首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10254篇
  免费   7篇
  国内免费   33篇
安全科学   9篇
废物处理   797篇
环保管理   1243篇
综合类   978篇
基础理论   3191篇
污染及防治   2101篇
评价与监测   1041篇
社会与环境   930篇
灾害及防治   4篇
  2023年   28篇
  2022年   150篇
  2021年   142篇
  2020年   46篇
  2019年   46篇
  2018年   1495篇
  2017年   1396篇
  2016年   1222篇
  2015年   147篇
  2014年   48篇
  2013年   41篇
  2012年   475篇
  2011年   1347篇
  2010年   695篇
  2009年   605篇
  2008年   884篇
  2007年   1233篇
  2006年   7篇
  2005年   24篇
  2004年   34篇
  2003年   64篇
  2002年   97篇
  2001年   14篇
  2000年   12篇
  1999年   3篇
  1998年   10篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1985年   1篇
  1984年   11篇
  1983年   8篇
  1974年   1篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
● Properties and performance relationship of CSBT photocatalyst were investigated. ● Properties of CSBT were controlled by simply manipulating glycerol content. ● Performance was linked to semiconducting and physicochemical properties. ● CSBT (W:G ratio 9:1) had better performance with lower energy consumption. ● Phenols were reduced by 48.30% at a cost of $2.4127 per unit volume of effluent. Understanding the relationship between the properties and performance of black titanium dioxide with core-shell structure (CSBT) for environmental remediation is crucial for improving its prospects in practical applications. In this study, CSBT was synthesized using a glycerol-assisted sol-gel approach. The effect of different water-to-glycerol ratios (W:G = 1:0, 9:1, 2:1, and 1:1) on the semiconducting and physicochemical properties of CSBT was investigated. The effectiveness of CSBT in removing phenolic compounds (PHCs) from real agro-industrial wastewater was studied. The CSBT synthesized with a W:G ratio of 9:1 has optimized properties for enhanced removal of PHCs. It has a distinct core-shell structure and an appropriate amount of Ti3+ cations (11.18%), which play a crucial role in enhancing the performance of CSBT. When exposed to visible light, the CSBT performed better: 48.30% of PHCs were removed after 180 min, compared to only 21.95% for TiO2 without core-shell structure. The CSBT consumed only 45.5235 kWh/m3 of electrical energy per order of magnitude and cost $2.4127 per unit volume of treated agro-industrial wastewater. Under the conditions tested, the CSBT demonstrated exceptional stability and reusability. The CSBT showed promising results in the treatment of phenols-containing agro-industrial wastewater.  相似文献   
4.
This paper discusses the findings of the first car MAX-DOAS (multi-axis differential optical absorption spectroscopy) field campaign (300 km long) along the National Highway-05 (N5-Highway) of Pakistan conducted on 13 and 14 November, 2012. The main objective of the field campaign was to assess the spatial distribution of tropospheric nitrogen dioxide (NO2) columns and corresponding concentrations along the N5-Highway from Islamabad to Lahore. Source identification of NO2 revealed that the concentrations were higher within major cities along the highway. The highest NO2 vertical column densities (NO2 VCDs) were found around two major cities of Rawalpindi and Lahore. This study also presents a comparison of NO2 VCDs measured by the ozone monitoring instrument (OMI) and car MAX-DOAS observations. The comparison revealed similar spatial distribution of the NO2 columns with both car MAX-DOAS and satellite observations, but the car MAX-DOAS observations show much more spatial details. Maximum NO2 VCD retrieved from car MAX-DOAS observations was up to an order of magnitude larger than the OMI observations in urban areas.  相似文献   
5.
Industrial agriculture is yearly responsible for the loss of 55–100 Pg of historical soil carbon and 9.9 Tg of reactive nitrogen worldwide. Therefore, management practices should be adapted to preserve ecological processes and reduce inputs and environmental impacts. In particular, the management of soil organic matter (SOM) is a key factor influencing C and N cycles. Soil microorganisms play a central role in SOM dynamics. For instance, microbial diversity may explain up to 77 % of carbon mineralisation activities. However, soil microbial diversity is actually rarely taken into account in models of C and N dynamics. Here, we review the influence of microbial diversity on C and N dynamics, and the integration of microbial diversity in soil C and N models. We found that a gain of microbial richness and evenness enhances soil C and N dynamics on the average, though the improvement of C and N dynamics depends on the composition of microbial community. We reviewed 50 models integrating soil microbial diversity. More than 90 % of models integrate microbial diversity with discrete compartments representing conceptual functional groups (64 %) or identified taxonomic groups interacting in a food web (28 %). Half of the models have not been tested against an empirical dataset while the other half mainly consider fixed parameters. This is due to the difficulty to link taxonomic and functional diversity.  相似文献   
6.
MnO2 microspheres with various surface structures were prepared using the hydrothermal method, and Au/MnO2 catalysts were synthesized using the sol-gel method. We obtained three MnO2 microspheres and Au/MnO2 samples: coherent solid spheres covered with wire-like nanostructures, solid spheres with nanosheets, and hierarchical hollow microspheres with nanoplatelets and nanorods. We investigated the properties and catalytic activities of formaldehyde oxidation at room temperature. Crystalline structures of MnO2 are the main factor affecting the catalytic activities of these samples, and γ-MnO2 shows high catalytic performance. The excellent redox properties are responsible for the catalytic ability of γ-MnO2. The gold-supported interaction can change the redox properties of catalysts and accelerate surface oxygen species transition, which can account for the catalytic activity enhancement of Au/MnO2. We also studied intermediate species. The dioxymethylene (DOM) and formate species formed on the catalyst surface were considered intermediates, and were ultimately transformed into hydrocarbonate and carbonate and then decomposed into CO2. A proposed mechanism of formaldehyde oxidation over Au/MnO2 catalysts was also obtained.  相似文献   
7.
The structure of coastal land cover in Estonia is intricate and exhibits considerable differences from site to site. The diverse geomorphology of the seashores is one of the key factors affecting the speed and magnitude of land cover changes. Likewise, the history of human inhabitance on the coast has also shaped the character of land cover. The Estonian coastal zone has experienced abrupt and radical changes in land ownership and its related land use during the last century. The main objectives of this paper are: 1) to give an overview of land use and the trends of development of land cover pattern along different parts of the Estonian coast; and 2) to analyze the relationships of natural and human processes and their cumulative impact on the evolution of coastal land cover pattern in Estonia. This study is based on results obtained during fieldwork in the study areas and on the analysis of large-scale (1:10,000) historical maps. In agriculturally dominant coastal areas, the traditional open landscape of fields and grassland at the beginning of the 20th century had been replaced by woodland and grasslands with shrubs by the start of the 21st century. Expansion of reed beds in areas of former seashore grasslands is another striking phenomenon. The structure of land cover on forested coasts has been fairly stable during the last 100 years. Areas of urban sprawl are characterised by dramatic changes in land cover structure. Rapidly increasing population and expanding settlements imposes on the ecological balance of the fragile dune forests in the coastal zone.  相似文献   
8.
The classical use of synthetic dyes is causing issues of environmental pollution and heath risk. As a consequence natural dyes are gaining interest, but the use of natural dyes still includes toxic reagents such as metals as mordants and acids to enhance color and yield. Therefore, we designed a new chitosan-polypropylene imine dendrimer hybrid at 0–2000 mg/L to treat wool before dyeing with cochineal. We compared dye exhaustion, color depth, color characteristics, and color fastness of the new process with dyed pristine and metal mordanted wool. Results show that wool pretreatment improved dye exhaustion from 48 to 88 %, shifted saturation point toward lower dye concentration from 3000 to 1000 mg/L, and improved color depth from 13.68 for pristine wool and 15.17 for metal mordanted wool to 23.89 for the new process.  相似文献   
9.
Environmental Science and Pollution Research - This study utilized the Pooled Mean Group estimator to investigate the effect of renewable energy consumption, electricity consumption, economic...  相似文献   
10.
Environmental Science and Pollution Research - The Belt and Road Initiative (BRI) is closely linked to the ecological sustainability of the infrastructure ventures that intrinsically include the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号