首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   4篇
  国内免费   1篇
安全科学   14篇
废物处理   12篇
环保管理   58篇
综合类   31篇
基础理论   59篇
污染及防治   58篇
评价与监测   15篇
社会与环境   26篇
灾害及防治   10篇
  2023年   3篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   14篇
  2015年   4篇
  2014年   8篇
  2013年   24篇
  2012年   16篇
  2011年   8篇
  2010年   13篇
  2009年   18篇
  2008年   20篇
  2007年   11篇
  2006年   9篇
  2005年   12篇
  2004年   11篇
  2003年   9篇
  2002年   2篇
  2001年   11篇
  2000年   8篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   8篇
  1990年   3篇
  1989年   3篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1982年   5篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1972年   2篇
  1970年   1篇
排序方式: 共有283条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
This study investigated the effects of various factors on the anaerobic degradation of nonylphenol (NP) in soil. The results show that the optimal pH for NP degradation was 7.0 and that the degradation rate was enhanced when the temperature was increased. The addition of compost enhanced NP degradation. The individual addition of the electron donors lactate, acetate, and pyruvate inhibited NP degradation. The high-to-low order of NP degradation rates under three anaerobic conditions was sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The results show that sulfate-reducing bacteria, methanogen, and eubacteria are involved in the anaerobic degradation of NP, with sulfate-reducing bacteria being a major component of the soil. Of the anaerobic strains isolated from the soil samples, strain AT3 expressed the best ability to biodegrade NP.  相似文献   
5.
Past agricultural management practices have contributed to the loss of soil organic carbon (SOC) and emission of greenhouse gases (e.g., carbon dioxide and nitrous oxide). Fortunately, however, conservation-oriented agricultural management systems can be, and have been, developed to sequester SOC, improve soil quality, and increase crop productivity. Our objectives were to (i) review literature related to SOC sequestration in cotton (Gossypium hirsutum L.) production systems, (ii) recommend best management practices to sequester SOC, and (iii) outline the current political scenario and future probabilities for cotton producers to benefit from SOC sequestration. From a review of 20 studies in the region, SOC increased with no tillage compared with conventional tillage by 0.48 +/- 0.56 Mg C ha(-1) yr(-1) (H(0): no change, p < 0.001). More diverse rotations of cotton with high-residue-producing crops such as corn (Zea mays L.) and small grains would sequester greater quantities of SOC than continuous cotton. No-tillage cropping with a cover crop sequestered 0.67 +/- 0.63 Mg C ha(-1) yr(-1), while that of no-tillage cropping without a cover crop sequestered 0.34 +/- 47 Mg C ha(-1) yr(-1) (mean comparison, p = 0.04). Current government incentive programs recommend agricultural practices that would contribute to SOC sequestration. Participation in the Conservation Security Program could lead to government payments of up to Dollars 20 ha(-1). Current open-market trading of C credits would appear to yield less than Dollars 3 ha(-1), although prices would greatly increase should a government policy to limit greenhouse gas emissions be mandated.  相似文献   
6.
Direct decomposition of N2O by perovskite-structure catalysts including La2NiO4, LaSrNiO4, and La0.7Ce0.3SrNiO4 was investigated. The catalysts were prepared by the Pechini method and characterized by x-ray diffraction (XRD), BET, scanning electron microscopy (SEM), and O2-TPD. Experimental results indicate that the properties of La2NiO4 are significantly improved by partially substituting La with Sr and Ce. N2O decomposition efficiencies achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 are 44 and 36%, respectively, at 400ºC. As the temperature was increased to 600ºC, N2O decomposition efficiency achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 reached 100% at an inlet N2O concentration of 1,000 ppm, while the space velocity was fixed at 8,000 hr?1. In addition, effects of various parameters including oxygen, water vapor, and space velocity were also explored. The results indicate that N2O decomposition efficiencies achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 are not significantly affected as space velocity is increased from 8,000 to 20,000 hr?1, while La0.7Ce0.3SrNiO4 shows better tolerance for O2 and H2O(g). On the other hand, N2 yield with LaSrNiO4 as catalyst can be significantly improved by doping Ce. At a gas hour space velocity of 8,000 hr?1, and a temperature of 600ºC, high N2O decomposition efficiency and N2 yield were maintained throughout the durability test of 60 hr, indicating the long-term stability of La0.7Ce0.3SrNiO4 for N2O decomposition.
Implications:Nitrous oxide (N2O) not only has a high global warming potential (GWP100 = 310), but also potentially destroys ozone in the stratosphere. Pervoskite-type catalysts including La2NiO4, LaSrNiO4, and La0.7Ce0.3SrNiO4 are applied for direct N2O decomposition. The results show that N2O decomposition can be enhanced as Sr and Ce are doped into La2NiO4. At 600ºC, N2O decomposition efficiencies achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 reach 100%, demonstrating high activity and good potential for direct N2O decomposition. Effects of O2 and H2O(g) contents on catalytic activities are also evaluated and discussed.  相似文献   
7.
In case of an avian-influenza-derived human flu pandemic, an inordinately high use of medicines over several weeks is predicted, in particular for the recommended influenza antiviral oseltamivir (Tamiflu). While the risk of oseltamivir to sewage works and freshwater bodies has already been assessed, the fact that a large percentage of the human population worldwide lives relatively close to the sea raises concern for its environmental compatibility in coastal marine waters. The potential risk of high oseltamivir use to the marine compartment is assessed in this publication, based on the 2003 European Community Technical Guidance Document (TGD) for risk assessment. Subchronic embryo–larval ecotoxicity tests with three marine invertebrates (Pomatoceros triqueter, Annelida; Mytilus edulis, Mollusca; Paracentrotus lividus, Echinodermata) and chronic growth inhibition tests with two different groups of marine microalgae (Isochrysis galbana, Haptophyta; Skeletonema costatum, Heterokontophyta) were performed with the active substance oseltamivir carboxylic acid to derive a dependable marine predicted no-effect concentration (PNEC). This was compared to a predicted environmental concentration (PEC) for oseltamivir in coastal waters, based on the worst-case freshwater PEC. The PEC/PNEC risk characterisation ratio for the marine compartment is well below 1, which in the terminology of the TGD signifies no immediate concern. Further, while oseltamivir may be persistent (P), it is not bioaccumulative (B) nor highly ecotoxic (T) and therefore not a PBT substance. In conclusion, even a high pandemic use of oseltamivir would not lead to a significant risk for the marine compartment, in confirmation of the risk assessment for sewage works and freshwaters.  相似文献   
8.
Abstract

Cholinesterase activity in the brain, RBC and plasma of Swiss mice was determined following different routes of administration of methamidophos. Continuous feeding with the insecticide caused a progressive inhibition of both plasma‐ and erythrocyte enzymes. The effect of methamidophos was more pronounced when applied in diet than when administered dermally or intraperitoneally. Following a single injection (i.p.) of methamidophos, the brain enzyme showed maximum inhibition 24 hr following treatment. At the appearance of tremors, the plasma and RBC‐enzymes showed considerable inhibition, the former being more inhibited. The plasma enzyme appears to be the most sensitive enzyme and may be taken as a suitable index for exposure to methamidophos.  相似文献   
9.
Indiscriminate release of metal oxide nanoparticles (NPs) into the environment due to anthropogenic activities has become a serious threat to the ecological system including plants. The present study assesses the toxicity of nano-CuO on rice (Oryza sativa cv. Swarna) seedlings. Three different levels of stress (0.5 mM, 1.0 mM and 1.5 mM suspensions of copper II oxide, <50 nm particle size) were imposed and seedling growth performance was studied along control at 7 and 14 d of experiment. Modulation of ascorbate–glutathione cycle, membrane damage, in vivo ROS detection, foliar H2O2 and proline accumulation under nano-CuO stress were investigated in detail to get an overview of nano-stress response of rice. Seed germination percentage was significantly reduced under stress. Higher uptake of Evans blue by nano-CuO stressed roots over control indicates loss of root cells viability. Presence of dark blue and deep brown spots on leaves evident after histochemical staining with NBT and DAB respectively indicate severe oxidative burst under nano-copper stress. APX activity was found to be significantly increased in 1.0 and 1.5 mM CuO treatments. Nevertheless, elevated APX activity might be insufficient to scavenge all H2O2 produced in excess under nano-CuO stress. That may be the reason why stressed leaves accumulated significantly higher H2O2 instead of having enhanced APX activity. In addition, increased GR activity coupled with isolated increase in GSH/GSSG ratio does not seem to prevent cells from oxidative damages, as evident from higher MDA level in leaves of nano-CuO stressed seedlings over control. Enhanced proline accumulation also does not give much protection against nano-CuO stress. Decline in carotenoids level might be another determining factor of meager performance of rice seedlings in combating nano-CuO stress induced oxidative damages.  相似文献   
10.
Low impact development best management practices (LID-BMPs) are considered to be cost-effective measures for mitigating the water quantity and quality impact of urban runoff. Currently, there are many types of LID-BMPs, and each type has its own intrinsic technical and/or economical characteristics and limitations for implementation. The selection of the most appropriate BMP type(s) for a specific installation site is therefore a very important planning step. In the present study, a multi-criteria selection index system (MCIS) for LID-BMP planning was developed. The selection indexes include 12 first-level indices and 26 second-level indices which reflect the specific installation site characteristics pertaining to site suitability, runoff control performance, and economics of implementation. A mechanism for ranking the BMPs was devised. First, each individual second-level index was assigned a numeric value that was based on site characteristics and information on LID-BMPs. The quantified indices were normalized and then integrated to obtain the score for each of the first-level index. The final evaluation scores of each LID-BMP were then calculated based on the scores for the first-level indices. Finally, the appropriate BMP types for a specific installation site were determined according to the rank of the final evaluation scores. In order to facilitate the application of the MCIS BMP ranking system, the computational process has been coded into a software program, BMPSELEC. A case study demonstrating the MCIS methodology, using an LID-BMP implementation planning at a college campus in Foshan, Guangdong Province, is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号