Wastewater treatment is one of critical issues faced by water utilities, and receives more and more attentions recently. The energy consumption modeling in biochemical wastewater treatment was investigated in the study via a general and robust approach based on Bayesian semi-parametric quantile regression. The dataset was derived from a municipal wastewater treatment plant, where the energy consumption of unit chemical oxygen demand (COD) reduction was the response variable of interest. Via the proposed approach, the comprehensive regression pictures of the energy consumption and truly influencing factors, i.e., the regression relationships at lower, median and higher energy consumption levels were characterized respectively. Meanwhile, the proposals for energy saving in different cases were also facilitated specifically. First, the lower level of energy consumption was closely associated with the temperature of influent wastewater, and the chroma-rich wastewater also showed helpful in the execution of energy saving. Second, at median energy consumption level, the COD-rich wastewater played a determinative role in the reduction of energy consumption, while the higher quality of treated water led to slightly energy intensive. Third, the higher level of energy consumption was most likely to be attributed to the relatively high temperature of wastewater and total nitrogen (TN)-rich wastewater, and both of the factors were preferably to be avoided to alleviate the burden of energy consumption. The study provided an efficient approach to controlling the energy consumption of wastewater treatment in the perspective of statistical regression modeling, and offered valuable suggestions for the future energy saving. 相似文献
Animal manure is an important source of antibiotics and antibiotic resistance genes (ARGs) in the environment. However, the difference of antibiotic residues and ARG profiles in layer and broiler manure as well as their compost remains unexplored. In this study, we investigated the profiles of twelve antibiotics, seventeen ARGs, and class 1 integrase gene (intI1) in layer and broiler manure, and the corresponding compost at large-scale. Compared with layer manure, broiler manure exhibited approximately six times more residual tetracyclines, especially chlortetracycline. The relative abundances of qnrS and ermA genes in broiler manure were significantly higher than those in layer manure. The concentration of tetracyclines not only had a significantly positive correlation with tetracycline resistance genes (tetA and tetC) but was also positively correlated with quinolone resistance (qepA, qnrB, and qnrS) and macrolide resistance (ermA and ermT). Most ARGs in manure were reduced after composting. However, the relative abundance of sulfonamide resistance gene sul1 increased up to 2.41% after composting, which was significantly higher than that of broiler (0.41%) and layer (0.62%) manure. The associated bacterial community was characterized by high-throughput 16S rRNA gene sequencing. The relative abundances of thermophilic bacteria had significant positive correlations with the abundance of sul1 in compost. The composting has a significant impact on the ARG-associated gut microbes in poultry manure. Variation partitioning analysis indicated that the change of bacterial community compositions and antibiotics contributed partially to the shift in ARG profiles. The results indicate that at industry-scale production broiler manure had more antibiotics and ARGs than layer manure did, and composting decreased most ARG abundances in poultry manure except for sulfonamide resistance genes.
Environmental Science and Pollution Research - With the increasingly serious pollution of plastics, biodegradable plastics (BDPs) have attracted attention as a new material that can replace... 相似文献
<正>1.Editor's note On 30 November 2016,the Brookings-Tsinghua Center for Public Policy(BTC),Caixin Video,and Columbia Global Centers(Beijing)jointly hosted a Seminar on the Future of Global Governance and Climate Change Action in a Changing Political Landscape.Leading experts on China's environmental policy and climate 相似文献