排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Steven S. Seefeldt Jeffery S. Conn Mingchu Zhang Phil N. Kaspari 《Agriculture, ecosystems & environment》2010,135(1-2):119-126
Over 14 million hectares of erosion prone cropland in the United States has been converted into grasslands through the Conservation Reserve Program (CRP) administered by the United States Department of Agriculture, however, studies of the effects of CRP enrollment on plant communities and subsequent plant succession are largely lacking. In Delta Junction, Alaska plant communities in CRP fields are transitioning from grasslands to shrub dominated plant communities, which are resulting in compliance problems with program regulations that state “fields must be maintained in a condition that permits easy conversion to cropland”. To determine plant succession and how previous land management and soils might influence the transition, we measured plant populations in 20 CRP fields throughout Delta Junction using modified-Whittaker plots. These data were combined with data on current management practices, previous farming history, soils, soil properties, diversity indices, and time since land was cleared and analyzed with nonmetric multidimensional scaling ordination to determine factors that influence plant succession. Time in the CRP was the only factor consistently influencing plant succession. As time in the CRP increased, the planted introduced grasses brome grass (Bromus inermis) and red fescue (Festuca rubra) and the native pteridophyte (Equisetum arvense) decreased, whereas a native grass (Calamigrostis canadensis), five native forb, two native shrub, and three native tree species increased. Plant diversity increased at a rate of more than 2 species per 1000 m2 per year. Regression analyses of plant species and plant groups using time in the CRP as the dependent variable resulted in the identification of outlier CRP fields with significantly more or less than expected covers of vegetation. All fields with these outliers had reasonable explanations for the differences in cover that were unrelated to the overall rate of plant succession. Current management practices will result in incompliant fields and different management practices that result in woody vegetation control is key to maintaining CRP fields in compliance. 相似文献
2.
W.David Conn 《Resources Policy》1977,3(1):23-38
This paper reviews the major problems that confronted the Committee set up by the Solid Waste Management Board of the state of California to prepare a background report and recommend alternative methods for reducing solid waste generation. The results of their analysis are presented, together with discussion of the conclusions reached. 相似文献
3.
4.
Paul B Conn Anthony D Arthur Larissa L Bailey Grant R Singleton 《Ecological applications》2006,16(2):829-837
Knowledge of animal abundance is fundamental to many ecological studies. Frequently, researchers cannot determine true abundance, and so must estimate it using a method such as mark-recapture or distance sampling. Recent advances in abundance estimation allow one to model heterogeneity with individual covariates or mixture distributions and to derive multimodel abundance estimators that explicitly address uncertainty about which model parameterization best represents truth. Further, it is possible to borrow information on detection probability across several populations when data are sparse. While promising, these methods have not been evaluated using mark-recapture data from populations of known abundance, and thus far have largely been overlooked by ecologists. In this paper, we explored the utility of newly developed mark-recapture methods for estimating the abundance of 12 captive populations of wild house mice (Mus musculus). We found that mark-recapture methods employing individual covariates yielded satisfactory abundance estimates for most populations. In contrast, model sets with heterogeneity formulations consisting solely of mixture distributions did not perform well for several of the populations. We show through simulation that a higher number of trapping occasions would have been necessary to achieve good estimator performance in this case. Finally, we show that simultaneous analysis of data from low abundance populations can yield viable abundance estimates. 相似文献
5.
6.
Ecologists often use samples from the age or stage structure of a population to make inferences about population-level processes and to parameterize matrix models. Typically, researchers make a simplifying assumption that age and stage classes are determined without error, when in fact some level of misclassification often can be expected. If unaccounted for, misclassification will lead to overly optimistic levels of precision and can cause biased estimates of age or stage structure. Although several studies have used information from known-age individuals to quantify errors in age or stage distribution, the problem of estimating the age or stage structure in face of such errors has received comparably little attention. In this paper, we describe a general statistical framework for estimating the true stage distribution of a sample when misclassification rates can be estimated. The estimation process requires auxiliary information on misclassification rates, such as data from individuals of known age. We analyze age-structured harvest records from black bears in Pennsylvania to illustrate how incorporating misclassification errors leads to changes in point estimates and provides a measure of precision. 相似文献
7.
8.
In order to minimize odor and manage nutrients in liquid pig manure we need to be able to predict what operational practices most influence the concentrations of volatile fatty acids (VFAs), ammonium nitrogen (NH(4)(+)-N), and other nutrients present in the manure. To determine this, we collected manure from 15 pig operations in southwestern Ontario in the fall of 2001 and 2002 and spring of 2002 and 2003. The manure was stored in concrete tanks at all operations. Manure from finishing pigs had the highest concentration of VFAs, NH(4)(+)-N, and other nutrients, followed by manure from mixed operations, and then manure from sow operations. The average concentration of total VFAs and NH(4)(+)-N in finishing pig manure was 166 mM compared with 36 and 99 mM, respectively, in sow manure. Total N, P, and K were 2.3, 2.5, and 1.7 times greater, respectively, in finishing pig compared with sow manure. There was no seasonal or year to year variation in amount. The diet of the pigs, use of feed additives or antibiotics, location of tanks, and whether the tanks were covered or mixed were not significant factors contributing to the difference in manure chemistry. The main reason for the differences between the three types of manure was manure dilution. The average dry matter content of finishing pig manure was 4.5 times that of sow manure. This was due to larger density of pigs in finishing compared with sow operations, less manure storage capacity per pig for finishing compared with sow operations, and more wash water being used for sow operations. 相似文献
9.
10.