首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   7篇
  国内免费   7篇
安全科学   6篇
废物处理   6篇
环保管理   29篇
综合类   17篇
基础理论   19篇
污染及防治   41篇
评价与监测   20篇
社会与环境   9篇
灾害及防治   1篇
  2023年   8篇
  2022年   10篇
  2021年   10篇
  2020年   1篇
  2018年   6篇
  2017年   7篇
  2016年   7篇
  2015年   1篇
  2014年   6篇
  2013年   7篇
  2012年   5篇
  2011年   12篇
  2010年   10篇
  2009年   7篇
  2008年   10篇
  2007年   9篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2002年   2篇
  1997年   1篇
  1994年   1篇
  1989年   1篇
  1985年   2篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1969年   1篇
  1966年   1篇
  1964年   1篇
  1961年   1篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
1.
2.
Environmental Science and Pollution Research - The energy storage application plays a vital role in the utilization of the solar energy technologies. There are various types of the energy storage...  相似文献   
3.
4.
Iminodiacetic acid was immobilized on waste paper by chemical modification in order to develop a new type of adsorption gel for heavy metal ions. Adsorption behavior of the gel was investigated for a number of metal ions, specifically Cu(II), Pb(II), Fe(III), Ni(II), Cd(II), and Co(II) at acidic pH. From batch adsorption tests, the order of selectivity was found to be as follows: Cu(II)  Fe(III) > Pb(II) > Ni(II)  Co(II) > Cd(II). Column tests were carried out for pairs of metal ions to understand the separation and pre-concentration behavior of the gel. It was found that mutual separation of Ni(II) from Co(II) and that of Pb(II) from Cd(II) can be achieved at pH 3. Similarly, selective separation of Cu(II) from Cu(II)–Fe(III) and Cu(II)–Pb(II) mixtures at pH 1.5 and 2, respectively, was observed by using this new adsorption gel. In all cases, almost complete recovery of the adsorbed metal was confirmed by elution tests with HCl.  相似文献   
5.
The concentrations of suspended particulate matter in the air of the Orissa Sand Complex had an average value of 128 ± 10 µg m?3 in residential areas and 170 ± 8 µg m?3 in mining areas. PM10 levels in residential areas were found to have an average of 35 ± 10 µg m?3, in mining areas 45 ± 10 µg m?3. The distribution of some elements is also discussed here. Inhalation doses were observed to be higher in summer than in winter and the rainy season. The highest dose rate was for the age group of 1 year, and health risks were found to be highest for the same. For adults, inhalation dose and health risk are 1.3 times higher in mining than in residential areas.  相似文献   
6.
The spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was investigated in Gomti River, a major tributary of the Ganga river (India). A total of 96 samples (water and sediments) were collected from eight different sites over a period of 2 years and analysed for 16 PAHs. The total concentrations of 16 PAHs in water and bed sediments ranged between 0.06 and 84.21 ??g/L (average (n?=?48), 10.33 ± 19.94 ??g/L) and 5.24?C3,722.87 ng/g dw [average (n?=?48): 697.25 ± 1,005.23 ng/g dw], respectively. In water, two- and three-ring PAHs and, in sediments, the three- and four-ring PAHs were the dominant species. The ratios of anthracene (An)/An + phenenthrene and fluoranthene (Fla)/Fla + pyrene were calculated to evaluate the possible sources of PAHs. These ratios reflected a pattern of pyrolytic input as a major source of PAHs in the river. Principal component analysis, further, separated the PAHs sources in the river sediments, suggesting that both the pyrolytic and petrogenic sources are contributing to the PAHs burden. The threat to biota of the river due to PAHs contamination was assessed using effect range low and effect range median values, and the results suggested that sediment at some occasions may pose biological impairment.  相似文献   
7.
Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We “benchmark” three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall‐runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite.  相似文献   
8.
Liquefied Natural Gas (LNG) storage facilities generally include channels to convey potential spills of the liquid to an impoundment. There is increasing concern that dispersion of vapors generated by flow of LNG in a channel may lead to higher than limit vapor concentrations for safety at site boundary from channels that may be close to the dike walls. This issue is of recent concern to regulatory agencies, because the calculation of vapor hazard distance(s) from LNG flow in a channel is not required under existing LNG facility siting standards or regulations.An important parameter that directly affects the calculated LNG vapor dispersion distance is the source strength (i.e., the rate of vaporization of LNG flow from the wetted channel surfaces, as a function of spatial position and time). In this paper a model is presented which considers the variation of the depth of the flowing LNG with spatial location and time, and calculates the spatial and temporal dependence of the mass rate of vapor generation. Self similar profiles for the spatial variation of the thermal boundary layer in the liquid wetted wall and liquid depth variation are assumed. The variation with time of the location of the liquid spread front and the evaporation rate are calculated for the case of a constant LNG spill rate into a rectangular channel. The effects of two different channel slopes are evaluated. Details of the results and their impact on dispersion distances are discussed.  相似文献   
9.
A mesoscale atmospheric model PSU/NCAR MM5 is used to provide operational weather forecasts for a nuclear emergency response decision support system on the southeast coast of India. In this study the performance of the MM5 model with assimilation of conventional surface and upper-air observations along with satellite derived 2-d surface wind data from QuickSCAT sources is examined. Two numerical experiments with MM5 are conducted: one with static initialization using NCEP FNL data and second with dynamic initialization by assimilation of observations using four dimensional data assimilation (FDDA) analysis nudging for a pre-forecast period of 12 h. Dispersion simulations are conducted for a hypothetical source at Kalpakkam location with the HYSPLIT Lagrangian particle model using simulated wind field from the above experiments. The present paper brings out the differences in the atmospheric model predictions and the differences in dispersion model results from control and assimilation runs. An improvement is noted in the atmospheric fields from the assimilation experiment which has led to significant alteration in the trajectory positions, plume orientation and its distribution pattern. Sensitivity tests using different PBL and surface parameterizations indicated the simple first order closure schemes (Blackadar, MRF) coupled with the simple soil model have given better results for various atmospheric fields. The study illustrates the impact of the assimilation of the scatterometer wind and automated weather stations (AWS) observations on the meteorological model predictions and the dispersion results.  相似文献   
10.
Two PCP-degrading bacterial strains, Bacillus cereus (ITRC-S6) and Serratia marcescens (ITRC-S7) were used for the treatment of pulp and paper mill effluent at conditions; 1.0% glucose and 0.5% peptone at 30 +/- 1 degrees C at 120 rpm for 168 h of incubation. These two bacterial strains effectively reduced colour (45-52%), lignin (30-42%), BOD (40-70%), COD (50-60%), total phenol (32-40%) and PCP (85-90%) within 168 h of incubation. However, the highest reduction in colour (62%), lignin (54%), BOD (70%), COD (90%), total phenol (90%) and PCP (100%) was recorded by mixed culture treatment. The bacterial mechanism for the degradation of pulp and paper mill effluent may be explained by an increase in the cells biomass using added co-substrates resulting liberation of significant amount of chloride due to bacterial dechlorination of chlorolignins and chlorophenols this showed reduction in colour, lignin and toxicity in the effluent. Further, GC-MS analysis of ethyl acetate-extractable compounds from treated pulp paper mill effluent reinforces the bacterium capability for the degradation of lignin and pentachlorophenol, as many aromatic compounds such as 2-chlorophenol, 2, 4, 6-trichlorophenol and tetrachlorohydroquinone, 6-chlorohydroxyquinol and tetrachlorohydroquinone detected which were not present in the untreated effluent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号