首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   5篇
  国内免费   9篇
安全科学   25篇
废物处理   18篇
环保管理   64篇
综合类   85篇
基础理论   118篇
污染及防治   133篇
评价与监测   28篇
社会与环境   51篇
灾害及防治   6篇
  2023年   4篇
  2022年   12篇
  2021年   12篇
  2020年   7篇
  2019年   15篇
  2018年   14篇
  2017年   29篇
  2016年   28篇
  2015年   21篇
  2014年   21篇
  2013年   23篇
  2012年   29篇
  2011年   32篇
  2010年   30篇
  2009年   25篇
  2008年   23篇
  2007年   44篇
  2006年   14篇
  2005年   18篇
  2004年   13篇
  2003年   15篇
  2002年   20篇
  2001年   8篇
  2000年   6篇
  1999年   8篇
  1998年   2篇
  1997年   6篇
  1996年   3篇
  1995年   6篇
  1994年   4篇
  1993年   6篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1976年   1篇
  1964年   2篇
  1962年   1篇
  1959年   2篇
  1956年   1篇
  1954年   1篇
  1951年   1篇
  1950年   1篇
  1948年   1篇
  1946年   1篇
  1940年   1篇
  1936年   2篇
排序方式: 共有528条查询结果,搜索用时 15 毫秒
1.
Background, Aims and Scope Sediments of the Spittelwasser creek are highly polluted with organic compounds and heavy metals due to the discharge of untreated waste waters from the industrial region of Bitterfeld-Wolfen, Germany over the course of more than one century. However, relatively few data have been published about the chloroorganic contamination of the sediment. This paper reports on the content of different (chloro)organic compounds with special emphasis on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F), and chlorobenzenes. Existing concepts for the remediation of Spittelwasser sediment include the investigation of natural attenuation processes, which largely depend on the presence of an intact microbial food web. In order to gain more insight in terms of biological activity, we analyzed the capacity of sediment microflora to degrade organic matter by measuring the activities of extracellular hydrolytic enzymes involved in the biogeochemical cycling of carbon, nitrogen, phosphorus and sulfur. Furthermore, the detection of physiologically active bacteria in the sediment, particularly of those known for their capability to reductively dehalogenate organochlorine compounds, illustrates the potential for intrinsic bioremediation processes. Methods PCDD/F and chlorobenzenes were analyzed by gas chromatography(GC)/mass spectrometry and GC/flame ionization detection, respectively. The activities of hydrolytic enzymes were determined from freshly sampled sediment layers using 4-methylumbelliferyl (MUF) or 7-amino-4-methylcoumarin-conjugated model compounds and kinetic fluorescence measurements. Physiologically active bacteria from different sediment layers were microscopically visualized by fluorescence in situ hybridization (FISH). Specific bacteria were identified by 16S rRNA gene amplification and sequencing. Results and Discussion The PCDD/F congener profile was dominated by dibenzofurans. In addition, the presence of specific tetra and pentachlorinated dibenzofurans supported the assumption that extensive magnesium production was one possible source for the high contamination. A range of other chloroorganic compounds, including several isomers of chlorobenzenes, hexachlorocyclohexane and 1,1,1-trichloro-2,2-bis (p-chloro-phenyl)ethane (DDT), was present in the sediment. Activities of extracellular hydrolytic enzymes showed a strong decrease in those sediment layers that were characterized by high contents of absorbable organic halogen (AOX), indicating disturbed organic matter decay. Interestingly, an abnormal increase of cellulolytic enzyme activities below the organochlorine-rich layers was observed, possibly caused by residual cellulose from discharges of sulfite pulping wastes. FISH revealed physiologically active bacteria in most sediment layers from the surface down to the depth of about 60 cm, including members of Desulfitobacterium (D.) and Sulfurospirillum. The presence of D. dehalogenans was confirmed by its partial 16S rRNA gene sequence. Conclusions Results of chemical sediment analyses demonstrated high loads of organochlorine compounds, particularly of PCDD/F. Several years after stopping the waste water discharge to Spittelwasser creek, this sediment remains a main source for pollution of the downstream river system by way of the ongoing mobilization of sediment during high floods. As indicated by our enzyme activity measurements, the decomposition potential for organic matter is low in organochlorine-rich sediment layers. In contrast, the comparably higher enzyme activities in less organochlorine-polluted sediment layers as well as the presence of physiologically active bacteria suggest a considerable potential for natural attenuation. Recommendations and Perspectives From our data we strongly recommend to explore the degradative capacity of sediment microorganisms and the limits for in situ activity towards specific sediment pollutants in more detail. This will give a sound basis for the integration of bioremediation approaches into general concepts to reduce the risk that permanently radiates from this highly contaminated sediment. Submission Editor: Dr. Henner Hollert (Henner.Hollert@urz.uniheidelberg.de)  相似文献   
2.
Thiacloprid is a new insecticide of the chloronicotinyl family. To assess its risk after application, residual characteristics of thiacloprid in marjoram, thyme, and camomile and in soil were studied under field conditions. The active ingredient was extracted from the plant material using a mixture of acetone-water. After filtration, the extract was concentrated to the aqueous phase, diluted with water, and portioned against ethyl acetate on a matrix solid phase dispersion column. Thiacloprid was extracted from soil using a mixture of methanol-water, filtered, and re.extracted (clean up) with dichloromethane. The residues were quantified using HPLC-MS-MS. The methods were validated by recovery experiments. Thiacloprid residues in marjoram, thyme, and camomile and in soil persisted beyond 10, 14, 14, and 21 d but no residues were detected after 14, 21, 21, and 28 d, respectively. The data obtained in this study indicated that the biexponential model is more suitable than the first-order function to describe the decline of thiacloprid in fresh marjoram, fresh thyme, and dried camomile flowers with half-life (t1/2) of 1.1, 0.7, and 1.2 d, respectively. However, both the first-order function and biexponential model were found to be applicable for dissipation of thiacloprid in soil with almost the same t1/2 values of 3.5 and 3.6 d. The results indicated that thiacloprid dissipates rapidly and does not accumulate in the tested herbs and in soil.  相似文献   
3.
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.  相似文献   
4.
BackgroundPhthalates, reproductive toxicants in animals, are synthetic chemicals with ubiquitous human exposures because of their extensive use, with potential detrimental health effects. Infants are considered to represent a population at increased risk, as they are exposed early in life to several different sources of exposure to phthalates.Objectives and methodsLittle information exists on phthalate exposure through breast milk from different geographic areas. By means of a LC/LC–MS/MS method we tested the presence of several different phthalate metabolites in breast milk from 62 healthy mothers living in Southern Italy.ResultsThe simple monoesters mono-isobutyl phthalate (MiBP) (median 18.8 μg/l) and mono(2-ethylhexyl) phthalate (MEHP) (median 8.4 μg/l) were present in all milk samples, whereas mono-n-butyl phthalate (MnBP) (median 1.5 μg/l) and mono-benzyl phthalate (MBzP) (median < 0.3 μg/l) were found in 64.5% and 43.5% of the samples, respectively. Among the oxidative metabolites of DEHP and DiNP only mono(2-ethyl-5-carboxypentyl) phthalate (5cx-MEPP) and monoisononyl phthalate with one hydroxyl group (OH-MiNP) were detectable in one and 13 samples (21%), respectively.ConclusionsThese findings indicate that exposure to phthalates through breast milk in Southern Italian infants is comparable to that of other countries, thus confirming that human milk may represent an additional potential source of phthalate exposure in a population at increased risk. However, different milk concentrations of MiBP may suggest a different pattern of usage of di-iso-butyl phthalate in Europe, as compared to USA, whereas for the first time, we detected an oxidative DiNP metabolite, whose significance remains unclear.  相似文献   
5.
A method for quality screening is suggested to detect volatile impurities in inorganic coagulants that are used for drinking water treatment. Static headspace gas chromatography with mass spectrometry detection (HS–GCMS) is sensitive and selective to detect volatiles in low concentrations. This study has discovered that volatile organic impurities are detectable in ferric and aluminium-based coagulants which are used for drinking water treatment. For ferric chloride, 2-propanol was detected at a level of 17–24 μg ml−1, acetone at 0.7–1.7 μg ml−1, 1,1,1-trichloroacetone at 0.02–0.04 μg ml−1, trichloromethane at 0.01–0.02 μg ml−1 and toluene at 0.01–0.12 μg ml−1. For ferric chloride sulfate, acetone was detected at a level of 0.12 μg ml−1, 1,1,1-trichloroacetone at 0.06–0.08 μg ml−1, trichloromethane at 0.13–0.23 μg ml−1, bromodichloromethane at 0.04–0.06 μg ml−1 and dibromochloromethane at 0.04–0.05 μg ml−1. For aluminium hydroxide chloride, only trichloromethane was detectable, but below the method detection limits (MDL). Although the concentrations of these impurities in commercial coagulants are low, this observation is important and should have impact on water industries for them to pay attention to the chemicals they are using for drinking water production.  相似文献   
6.
Application of microbial hot spots enhances pesticide degradation in soils   总被引:1,自引:0,他引:1  
Through transfer of an active, isoproturon degrading microbial community, pesticide mineralization could be successfully enhanced in various soils under laboratory and outdoor conditions. The microbes, extracted from a soil having high native ability to mineralize this chemical, were established on expanded clay particles and distributed to various soils in the form of microbial "hot spots". Both, diffusion controlled isoproturon mass flow towards these "hot spots" (6microg d(-1)) as well as microbial ability to mineralize the herbicide (approximately 5microg d(-1)) were identified as the main processes enabling a multiple augmentation of the native isoproturon mineralization even in soils with heavy metal contamination. Soil pH-value appears to exert an important effect on the sustainability of this process.  相似文献   
7.
Several lysimeter scenarios and approaches exist to study the fate of agro-chemicals or contaminants from deposition in soil columns. In many systems just transport and leaching of the parent compound is followed, in some systems the leaching and transport of the metabolites is investigated as well. In more sophisticated lysimeter systems the volatilization and also the mineralization of the applied chemicals can be additionally monitored. Depending on the lysimeter system used and on the fact whether the applied chemicals are 14C-labeled or not, different results and various interpretations of the results might be achieved. Different lysimeter systems are described in this paper and a real dataset of a specific lysimeter experiment was transferred and evaluated in a virtual approach in the different lysimeter systems in order to show the advantages and disadvantages of the various systems.  相似文献   
8.
Terrestrial freshwater runoff strongly influences physical and biogeochemical processes at the fjord scale and can have global impacts when considered at the Greenland scale. We investigate the performance of the HIRHAM5 regional climate model over the catchments delivering freshwater to Tyrolerfjord and Young Sound by comparing to the unique Greenland Ecological Monitoring database of in situ observations from this region. Based on these findings, we estimate and discuss the fraction of runoff originating from glacierized and non-glacierized land delivered at the daily scale between 1996 and 2008. We find that glaciers contributed on average 50–80% of annual terrestrial runoff when considering different sections of Tyrolerfjord–Young Sound, but snowpack depletion on land and consequently runoff happens about one month earlier in the model than observed in the field. The temporal shift in the model is a likely explanation why summer surface salinity in the inner fjord did not correlate to modelled runoff.  相似文献   
9.
Gaseous nitrogen dioxide (NO2) represents an oxidant that is present in relatively high concentrations in various indoor settings. Remarkably increased NO2 levels up to 1.5 ppm are associated with homes using gas stoves. The heterogeneous reactions of NO2 with adsorbed water on surfaces lead to the generation of nitrous acid (HONO). Here, we present a HONO source induced by heterogeneous reactions of NO2 with selected indoor paint surfaces in the presence of light (300 nm?<?λ?<?400 nm). We demonstrate that the formation of HONO is much more pronounced at elevated relative humidity. In the presence of light (5.5 W m?2), an increase of HONO production rate of up to 8.6?·?109 molecules cm?2 s?1 was observed at [NO2]?=?60 ppb and 50 % relative humidity (RH). At higher light intensity of 10.6 (W m?2), the HONO production rate increased to 2.1?·?1010 molecules cm?2 s?1. A high NO2 to HONO conversion yield of up to 84 % was observed. This result strongly suggests that a light-driven process of indoor HONO production is operational. This work highlights the potential of paint surfaces to generate HONO within indoor environments by light-induced NO2 heterogeneous reactions.  相似文献   
10.
We report results of a multigenerational experiment with Chironomus riparius. Two strains with a high and a low level of genetic variability were exposed to a low, environmentally relevant TBT concentration of 80 μg Sn kg−1 sediment dw nominally (time weighted mean, based on measured concentrations: 4.5 μg Sn kg−1 sediment dw), and various life history traits as well as genetic diversity were monitored for eleven consecutive generations. While TBT effects are hardly visible in the outbred and genetically diverse strain, the inbred and genetically impoverished strain shows a clearly reduced population growth rate compared to the control. Moreover, the impoverished strain shows an increase in fitness over time. Analyses of variation at five microsatellite loci revealed that the level of genetic variation is strongly reduced in the inbred compared to the outbred strain. Moreover, genetic diversity increases over time in the inbred strain. This finding explains the observed increase in fitness in both inbred lineages (control and TBT exposed). The results document that inbreeding and the level of genetic diversity might be of crucial importance in populations under pollution stress. Furthermore, ecotoxicological bioassays have to consider genetic diversity if results between laboratories should be comparable. Our data provides evidence that genetic diversity strongly contributes to the survival of a population exposed to chemical pollution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号