The East Usambara Mountains, recognized as one of the 25 most important biodiversity hot spots in the world, have a high degree
of species diversity and endemism that is threatened by increasing human pressure on resources. Traditional slash and burn
cultivation in the area is no longer sustainable. However, it is possible to maintain land productivity, decrease land degradation,
and improve rural people’s livelihood by ameliorating cultivation methods. Improved agroforestry seems to be a very convincing
and suitable method for buffer zones of conservation areas. Farmers could receive a reasonable net income from their farm
with little investment in terms of time, capital, and labor. By increasing the diversity and production of already existing
cultivations, the pressure on natural forests can be diminished. The present study shows a significant gap between traditional
cultivation methods and improved agroforestry systems in socio-economic terms. Improved agroforestry systems provide approximately
double income per capita in comparison to traditional methods. More intensified cash crop cultivation in the highlands of
the East Usambara also results in double income compared to that in the lowlands. However, people are sensitive to risks of
changing farming practices. Encouraging farmers to apply better land management and practice sustainable cultivation of cash
crops in combination with multipurpose trees would be relevant in improving their economic situation in the relatively short
term. The markets of most cash crops are already available. Improved agroforestry methods could ameliorate the living conditions
of the local population and protect the natural reserves from human disturbance. 相似文献
Different social-ecological systems around the world are managed under community-based natural resource management (CBNRM) strategies. This paper analyses how CBNRM strategies influence the resilience of social-ecological systems to the disturbances they face, drawing upon the experience of three Latin American cases (two in Mexico and one in Colombia). The cases differ in their CBNRM approach and in the time these governance systems have been in place. By using a mixed-method approach, we review the socio-ecological history and describe each CBNRM characteristics. We then assess their resilience to socioeconomic and environmental disturbances through a set of indicators. We found that CBNRM strategies influence positively and negatively resilience and that internal decisions might address important threats. On the positive side, the social-ecological systems with longer tradition of CBNRM and more local buy-in of commonly agreed objectives appear to be more resilient to environmental challenges. But, internal governance factors such as power imbalances, poor income distribution, and gender inequities linked to CBNRM undermine resilience and foster out migration. Finally, communities appear to have limited capacities to cope with external disturbances such as global drivers of change or national policies that negatively affect their social-ecological resilience.
Regional Environmental Change - The published online version contains mistake. Author name was incorrectly captured. Instead of Maria del Mar Delgado-Serrano was incorrectly captured as Ma del Mar... 相似文献
The removal of heavy metals from wastewater has become a global challenge, which demands the continuous study of efficient and low-cost treatment alternatives such as adsorption. In this research, the removal of zinc was evaluated using batch adsorption processes with nonconventional materials such as graphene oxide (GO), magnetite (MG), and their composites (GO:MG), formulated with three weight ratios (2:1, 1:1, and 1:2). Graphene was synthesized by the modified Marcano method, using pencil lead graphite as a precursor. MG and the composites were synthesized by chemical coprecipitation of ferrous sulfate and ferric chloride. The materials were characterized by Raman and Fourier transform infrared spectroscopies, scanning electron microscopy, X-ray diffraction, and the Brunauer–Emmett–Teller method to determine the functional groups, microstructural and morphological characteristics, and specific surface area. Batch adsorption tests were carried out to optimize the adsorbent dose and contact time with zinc solutions of 10 ppm. Zinc adsorption reached equilibrium at 2 h, with an optimal dose between 0.25 and 1.0 g/L. The maximum zinc removal efficiencies/adsorption capacities were 98.6%/165.6, 83.4%/47.6, 83.5%/21.9, 72.8%/19.9, and 82.2%/9.25 mg/g using GO, 2GO:1MG, 1GO:1MG, 1GO:2MG, and MG, respectively. Furthermore, the analysis of the isotherm and adsorption kinetics models determined that the adsorption processes using MG and the composites fit the Sips and pseudo-second-order models. 相似文献
Soil pollution with Cd is an environmental problem common in the world, and it is necessary to establish what Cd concentrations
in soil could be dangerous to its fertility from toxicity effects and the risk of transference of this element to plants and
other organisms of the food chain. In this study, we assessed Cd toxicity on soil microorganisms and plants in two semiarid
soils (uncultivated and cultivated). Soil ATP content, dehydrogenase activity, and plant growth were measured in the two soils
spiked with concentrations ranging from 3 to 8000 mg Cd/kg soil and incubated for 3 h, 20 days, and 60 days. The Cd concentrations
that produced 5%; 10%;, and 50%; inhibition of each of the two soil microbiological parameter studied (ecological dose, ED,
values) were calculated using two different mathematical models. Also, the effect of Cd concentration on plant growth of ryegrass
(Lolium perenne, L.) was studied in the two soils. The Cd ED values calculated for soil dehydrogenase activity and ATP content were higher
in the agricultural soils than in the bare soil. For ATP inhibition, higher ED values were calculated than for dehydrogenase
activity inhibition. The average yields of ryegrass were reduced from 5.03 to 3.56 g in abandoned soil and from 4.21 to 1.15
g in agricultural soil with increasing concentrations of Cd in the soil. Plant growth was totally inhibited in abandoned and
agricultural soils at Cd concentrations above 2000 and 5000 mg/kg soil, respectively. There was a positive correlation between
the concentration of Cd in the plants and the total or DTPA-extractable concentrations of Cd in the soil. 相似文献
This paper studies the scavenging efficiencies of aerosol emissions from coal-fired power plants under different removal mechanisms (coagulation, heterogeneous nucleation and gravitational settling) as a function of time. It also analyses the ‘health impact’ of the aerosol before and after the above dynamic mechanisms by comparing the respirable dust fractions. The well-known equations of evolution are applied to an average PSD that represents the exhaust particulate emissions from coal-fired power plants (i.e. Aboño power plant in Asturias that belongs to Hidrocantábrico Group, S.A.). From this study it is inferred that respirable dust is scavenged with the greatest difficulty and when compared with the initial volume of respirable dust, roughly 20% remains after 18 h of gravitational settling. Therefore, gravitational settling is the main removal mechanism of respirable dust compared to condensation and coagulation. 相似文献
Cattle manure from a dairy farm was treated in order to reduce its pollution potential. The manure came from a farm with 120 cows kept in stables in a free stall barn. As pretreatment, the manure is usually filtered on the farm using a screw press separator with a 0.5 mm mesh. Approximately 70% of the total filtered volume passes through the screen, thus constituting the liquid fraction. This fraction, with a composition of around 64,500 mg COD/l, 5770 mg total-N/l and 800 mg total-P/l, was subjected to centrifugation followed by a two-step biological treatment (anoxic-aerobic) to reduce organic matter (COD), nitrogen and phosphorus compounds. Centrifugation led to the following removal efficiencies: 35% total solids, 60% COD, 75% total phosphorus and 20% total nitrogen (mainly organic nitrogen). With the subsequent anoxic-aerobic treatment, average removal efficiencies of 85% for COD, 90% for total phosphorus and 75% for total nitrogen were achieved. 相似文献
Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb2+, Hg2+, and Ni2+ and the harmless Ca2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery. 相似文献
In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7–3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion.
Implications: Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from local wood species and wood stove performance would help to identify better biomass fuels and wood stove technologies in order to reduce air pollution from residential wood burning. 相似文献
Agricultural water management needs to evolve in view of increased water scarcity, especially when farming and natural protected areas are closely linked. In the study site of Doñana (southern Spain), water is shared by rice producers and a world heritage biodiversity ecosystem. Our aim is to contribute to defining adaptation strategies that may build resilience to increasing water scarcity and minimize water conflicts among agricultural and natural systems. The analytical framework links a participatory process with quantitative methods to prioritize the adaptation options. Bottom-up proposed adaptation measures are evaluated by a multi-criteria analysis (MCA) that includes both socioeconomic criteria and criteria of the ecosystem services affected by the adaptation options. Criteria weights are estimated by three different methods—analytic hierarchy process, Likert scale and equal weights—that are then compared. Finally, scores from an MCA are input into an optimization model used to determine the optimal land-use distribution in order to maximize utility and land-use diversification according to different scenarios of funds and water availability. While our results show a spectrum of perceptions of priorities among stakeholders, there is one overriding theme that is to define a way to restore part of the rice fields to natural wetlands. These results hold true under the current climate scenario and even more so under an increased water scarcity scenario. 相似文献