全文获取类型
收费全文 | 36篇 |
免费 | 1篇 |
国内免费 | 1篇 |
专业分类
安全科学 | 1篇 |
废物处理 | 1篇 |
环保管理 | 20篇 |
综合类 | 5篇 |
基础理论 | 4篇 |
污染及防治 | 4篇 |
评价与监测 | 2篇 |
社会与环境 | 1篇 |
出版年
2020年 | 1篇 |
2019年 | 3篇 |
2015年 | 1篇 |
2013年 | 1篇 |
2012年 | 3篇 |
2011年 | 4篇 |
2010年 | 1篇 |
2008年 | 3篇 |
2007年 | 1篇 |
2006年 | 2篇 |
2005年 | 3篇 |
2004年 | 1篇 |
2003年 | 1篇 |
1999年 | 1篇 |
1998年 | 3篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 2篇 |
排序方式: 共有38条查询结果,搜索用时 0 毫秒
1.
Schmidt TS Clements WH Wanty RB Verplanck PL Church SE San Juan CA Fey DL Rockwell BW DeWitt EH Klein TL 《Ecological applications》2012,22(3):870-879
Geologic processes strongly influence water and sediment quality in aquatic ecosystems but rarely are geologic principles incorporated into routine biomonitoring studies. We test if elevated concentrations of metals in water and sediment are restricted to streams downstream of mines or areas that may discharge mine wastes. We surveyed 198 catchments classified as "historically mined" or "unmined," and based on mineral-deposit criteria, to determine whether water and sediment quality were influenced by naturally occurring mineralized rock, by historical mining, or by a combination of both. By accounting for different geologic sources of metals to the environment, we were able to distinguish aquatic ecosystems limited by metals derived from natural processes from those due to mining. Elevated concentrations of metals in water and sediment were not restricted to mined catchments; depauperate aquatic communities were found in unmined catchments. The type and intensity of hydrothermal alteration and the mineral deposit type were important determinants of water and sediment quality as well as the aquatic community in both mined and unmined catchments. This study distinguished the effects of different rock types and geologic sources of metals on ecosystems by incorporating basic geologic processes into reference and baseline site selection, resulting in a refined assessment. Our results indicate that biomonitoring studies should account for natural sources of metals in some geologic environments as contributors to the effect of mines on aquatic ecosystems, recognizing that in mining-impacted drainages there may have been high pre-mining background metal concentrations. 相似文献
2.
Bryant RB Buda AR Kleinman PJ Church CD Saporito LS Folmar GJ Bose S Allen AL 《Journal of environmental quality》2012,41(3):664-671
High levels of accumulated phosphorus (P) in soils of the Delmarva Peninsula are a major source of dissolved P entering drainage ditches that empty into the Chesapeake Bay. The objective of this study was to design, construct, and monitor a within-ditch filter to remove dissolved P, thereby protecting receiving waters against P losses from upstream areas. In April 2007, 110 Mg of flue gas desulfurization (FGD) gypsum, a low-cost coal combustion product, was used as the reactive ingredient in a ditch filter. The ditch filter was monitored from 2007 to 2010, during which time 29 storm-induced flow events were characterized. For storm-induced flow, the event mean concentration efficiency for total dissolved P (TDP) removal for water passing through the gypsum bed was 73 ± 27% confidence interval (α = 0.05). The removal efficiency for storm-induced flow by the summation of load method was 65 ± 27% confidence interval (α = 0.05). Although chemically effective, the maximum observed hydraulic conductivity of FGD gypsum was 4 L s(-1), but it decreased over time to <1 L s(-1). When bypass flow and base flow were taken into consideration, the ditch filter removed approximately 22% of the TDP load over the 3.6-yr monitoring period. Due to maintenance and clean-out requirements, we conclude that ditch filtration using FGD gypsum is not practical at a farm scale. However, we propose an alternate design consisting of FGD gypsum-filled trenches parallel to the ditch to intercept and treat groundwater before it enters the ditch. 相似文献
3.
4.
Barry P. Rochelle M. Robbins Church Warren A. Gebert David J. Graczyk William R. Krug 《Journal of the American Water Resources Association》1988,24(1):35-41
ABSTRACT: As part of the U.S. Environmental Protection Agency's effort to determine the long-term effects of acidic deposition on surface water chemistry, annual runoff was estimated for about 1000 ungaged sites in the eastern U.S. using runoff contour maps. One concern in using contour maps was that a bias may be introduced in the runoff estimates due to the size of the 1000 ungaged sites relative to the size of the watersheds used in developing the maps. To determine if a bias was present the relationship between the annual runoff (expressed as depth) and the watershed area for the Northeast (NE) and Southern Blue Ridge Province (SBRP) was tested using five regional data bases. One short-term data base (1984 Water Year, n = 531) and two long-term data bases (1940–57, n = 134 and 1951–80, n = 342) were used in the NE. In the SBRP one short-term database (1984 Water Year, n = 531) and one long-term data base (1951–80, n = 60) were used. For the NE and the SBRP, runoff was not directly correlated with watershed area using the five regional databases. Also, runoff normalized by precipitation was not related to watershed area. 相似文献
5.
6.
Lee Benda Marwan A. Hassan Michael Church Christine L. May 《Journal of the American Water Resources Association》2005,41(4):835-851
Headwater streams comprise 60 to 80 percent of the cumulative length of river networks. In hilly to mountainous terrain, they reflect a mix of hillslope and channel processes because of their close proximity to sediment source areas. Their morphology is an assemblage of residual soils, landslide deposits, wood, boulders, thin patches of poorly sorted alluvium, and stretches of bedrock. Longitudinal profiles of these channels are strongly influenced by steps created by sediment deposits, large wood, and boulders. Due to the combination of small drainage area, stepped shallow gradient, large roughness elements, and cohesive sediments, headwater streams typically transport little sediment or coarse wood debris by fluvial processes. Consequently, headwaters act as sediment reservoirs for periods spanning decades to centuries. The accumulated sediment and wood may be episodically evacuated by debris flows, debris floods, or gully erosion and transported to larger channels. In mountain environments, these processes deliver significant amounts of materials that form riverine habitats in larger channels. In managed steepland forests, accelerated rates of landslides and debris flows resulting from the harvest of headwater forests have the potential to seriously impact the morphology of headwater streams and downstream resources. 相似文献
7.
We investigated the benefits of larval cannibalism in the Neotropical mosquito Trichoprosopon digitatum. The clutch size of the mosquito in the field was strongly correlated with adult female size, indicating a fitness advantage
to being large. In controlled laboratory experiments, we compared the survivorship and eventual adult sizes of larvae that
were given the opportunity to cannibalise conspecifics throughout their lifetimes with the survivorship and adult sizes of
larvae that were prevented from cannibalising. Since the benefits of cannibalism are likely to depend on the context in which
it occurs, the experiment was conducted at two levels of alternative food availability. When food availability was high most
larvae survived to adulthood, females cannibalised more than males and there was no measurable advantage to cannibalism in
terms of survival rate, emergence time or adult size. Larvae were significantly more cannibalistic when food availability
was lower, although under these conditions no larvae survived to adulthood. Nevertheless, under low food an important fitness
benefit to cannibalism was revealed: individuals which had the opportunity to cannibalise survived significantly longer as
larvae than those which did not. This increased longevity is likely to provide an important advantage to mosquito larvae when
they wait for the input of unpredictable food sources.
Received: 7 October 1995/Accepted after revision: 13 April 1996 相似文献
8.
J. Van Sickle P J. Wigington M. K. Church 《Journal of the American Water Resources Association》1997,33(2):359-366
ABSTRACT: Programs of monthly or annual stream water sampling will rarely observe the episodic extremes of acidification chemistry that occur during brief, unpredictable runoff events. When viewed in the context of data from several streams, however, baseflow measurements of variables such as acid neutralizing capacity, pH and NO3· are likely to be highly correlated with the episodic extremes of those variables from the same stream and runoff season. We illustrate these correlations for a water chemistry record, nearly two years in length, obtained from intensive sampling of 13 small Northeastern U.S. streams studied during USEPA's Episodic Response Project. For these streams, simple regression models estimate episodic extremes of acid neutralizing capacity, pH, NO3·, Ca2+, SO42?, and total dissolved Al with good relative accuracy from statistics of monthly or annual index samples. Model performances remain generally stable when episodic extremes in the second year of sampling are predicted from first-year models. Monthly or annual sampling designs, in conjunction with simple empirical models calibrated and maintained through intensive sampling every few years, may estimate episodic extremes of acidification chemistry with economy and reasonable accuracy. Such designs would facilitate sampling a large number of streams, thereby yielding estimates of the prevalence of episodic acidification at regional scales. 相似文献
9.
Daniela Diaz Jared Church Mikaeel Young Keug Tae Kim Jungsu Park Yun Bin Hwang Swadeshmukul Santr Woo Hyoung Lee 《环境科学学报(英文版)》2019,31(8):213-224
Intensification of pollution loading worldwide has promoted an escalation of different types of disease-causing microorganisms, such as harmful algal blooms(HABs), instigating detrimental impacts on the quality of receiving surface waters. Formation of unwanted disinfection by-products(DBPs) resulting from conventional disinfection technologies reveals the need for the development of new sustainable alternatives. Quaternary Ammonium Compounds(QACs) are cationic surfactants widely known for their effective biocidal properties at the ppm level. In this study, a novel silica-based antimicrobial nanofilm was developed using a composite of silica-modified QAC(Fixed-Quat) and applied to a fiberglass mesh as an active surface via sol–gel technique. The synthesized Fixed-Quat nanocoating was found to be effective against E. coli with an inactivation rate of 1.3 × 10~(-3) log reduction/cm min. The Fixed-Quat coated fiberglass mesh also demonstrated successful control of Microcystis aeruginosa with more than 99% inactivation after 10 hr of exposure.The developed antimicrobial mesh was also evaluated with wild-type microalgal species collected in a water body experiencing HABs, obtaining a 97% removal efficiency. Overall,the silica-functionalized Fixed-Quat nanocoating showed promising antimicrobial properties for water disinfection and HABs control, while decreasing concerns related to DBPs formation and the possible release of toxic nanomaterials into the environment. 相似文献
10.
Riprap, consisting of large boulders or concrete blocks, is extensively used to stabilize streambanks and to inhibit lateral erosion of rivers, yet its effect on river morphology and its ecological consequences have been relatively little studied. In this paper, we review the available information, most of it culled from the “grey” literature. We use a simple one‐dimensional morphodynamic model as a conceptual tool to illustrate potential morphological effects of riprap placement in a gravel‐bed river, which include inhibition of local sediment supply to the channel and consequent channel bed scour and substrate coarsening, and downstream erosion. Riprap placement also tends to sever organic material input from the riparian zone, with loss of shade, wood input, and input of finer organic material. Available information on the consequences for the aquatic ecosystem mainly concerns effects on commercially and recreationally important fishes. The preponderance of studies report unfavorable effects on local numbers, but habitat niches created by openings in riprap can favorably affect invertebrates and some small fishes. There is a need for much more research on both morphological and ecosystem effects of riprap placement. 相似文献