首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
环保管理   1篇
综合类   1篇
基础理论   2篇
污染及防治   1篇
  2019年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Forest ecosystems may be actively managed toward heterogeneous stand structures to provide both economic (e.g., wood production and carbon credits) and environmental benefits (e.g., invasive pest resistance). In order to facilitate wider adoption of possibly more sustainable forest stand structures, defining growth expectations among alternative management scenarios is crucial. To estimate the effect of tree size and spatial distributions on growth for forest structures commonly considered in uneven-aged forest stand management, large (0.2 ha+) plots were established in 14 uneven-aged ponderosa pine stands in eastern Montana. All study trees were stem-mapped and measured for diameter and 10-year sapwood and basal area increment. A generalized growth model was developed to predict both total and merchantable 10-year basal area increment for nine hypothetical stand structures [three diameter distributions (reverse-J, irregular, flat) × three spatial distributions (clumpy, partial clumpy, uniform)]. Results indicate that the size and spatial distributions of individual trees have a considerable effect on overall stand growth. The greatest total stand growth was in stands with reverse “J” shaped tree size distributions, while the greatest merchantable stand growth was in stands with “flat” diameter distributions and uniform spatial distributions. Through better comprehension of generalized uneven-aged stand growth dynamics, forest managers may better assess the effects of alternative stand structures on stand growth while providing forest stand structures that may be more resilient in a changing climate.  相似文献   
2.
In efforts such as land use change monitoring, carbon budgeting, and forecasting ecological conditions and timber supply, there is increasing demand for regional and national data layers depicting forest cover. These data layers must permit small area estimates of forest area and, most importantly, provide associated error estimates. This paper presents a model-based approach for coupling mid-resolution satellite imagery with plot-based forest inventory data to produce estimates of probability of forest and associated error at the pixel-level. The proposed Bayesian hierarchical model provides access to each pixel’s posterior predictive distribution allowing for a highly flexible analysis of pixel and multi-pixel areas of interest. The paper presents a trial using multiple dates of Landsat imagery and USDA Forest Service Forest Inventory and Analysis plot data. The results describe the spatial dependence structure within the trial site, provide pixel and multi-pixel summaries of probability of forest land use, and explore discretization schemes of the posterior predictive distributions to forest and non-forest classes. Model prediction results of a holdout set analysis suggest the proposed model provides high classification accuracy, 88%, for the trial site.
Ronald E. McRobertsEmail:
  相似文献   
3.
Mitigation and Adaptation Strategies for Global Change - Carbon dioxide (CO2) emissions from Southeast Asia peatlands are contributing substantially to global anthropogenic emissions to the...  相似文献   
4.
It is an ongoing challenge to develop and demonstrate management practices that increase the sustainability of agricultural systems. Soil carbon and nitrogen dynamics directly affect soil quality, crop productivity and environmental impacts. Root systems are central to the acquisition of water and nutrients by plants, but are also a major pathway for the inputs of carbon and nutrients to soil. The complexity of both biotic and abiotic interactions, combined with stochastic changes in root architecture, makes it difficult to understand below-ground dynamics on the basis of experimentation alone. The integration of dynamic models of above-ground growth, three-dimensional root system demography, and interactions between plants and the environment, into one single model is a major challenge because of the complexity of the systems.In order to understand the interaction between a plant and the environment, it is advantageous to develop a model framework to integrate submodels that simulate various plant and environmental components. The objective of this paper is to outline a mechanistic and process-based model, which is capable of simulating interactions among environmental conditions around plants, plant growth and development, nitrogen and carbon cycles, with a three-dimensional root system submodel as an interface.The model presented in this paper is a mixed dimensional, multi-layer, field scale, weather-driven and daily time-step dynamic simulation model. The current version includes a plant growth and development component, a nitrogen cycling component, a carbon cycling component, plus a soil water component that includes representation of water flow to field drains as well as downwards through the soil layers, together with a heat transfer component. The components themselves and linkage among components are designed using object-oriented techniques, which makes the model robust, understandable and reusable. The components are implemented in the C++ programming language, and inputs and outputs of all components are organised as a database in either Microsoft® SQL Server 2000, Access 2000 or MySQL5.0. Root architecture is visualised by using the OpenGL graphics system. Preliminary validation with two separate experimental datasets shows that the model can reasonably simulate root systems, nitrogen cycling, water movement and plant growth.  相似文献   
5.
Methyl chloride (CH3Cl) is the most abundant natural chlorine containing compound in the atmosphere, and responsible for a significant fraction of stratospheric ozone destruction. Understanding the global CH3Cl budget is therefore of great importance. However, the strength of the individual sources and sinks is still uncertain. Leaf litter is a potentially important source of methyl chloride, but factors controlling the emissions are unclear. This study investigated CH3Cl emissions from leaf litter of twelve halophyte species. The emissions were not due to biological activity, and emission rates varied between halophyte species up to two orders of magnitude. For all species, the CH3Cl emission rates increased with temperature following the Arrhenius relation. Activation energies were similar for all investigated plant species, indicating that even though emissions vary largely between plant species, their response to changing temperatures is similar. The chloride and methoxyl group contents of the leaf litter samples were determined, but those parameters were not significantly correlated to the CH3Cl emission rate.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号