首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   3篇
  国内免费   1篇
安全科学   5篇
废物处理   12篇
环保管理   5篇
综合类   23篇
基础理论   26篇
环境理论   1篇
污染及防治   19篇
评价与监测   4篇
社会与环境   3篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   5篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   10篇
  2007年   6篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1981年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1966年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
1.
The Japanese government is planning to introduce DME as a substituted energy for oil and LNG. Introduction of DME could contribute greatly to both the prevention of global warming and the formation of resource-recycling societies. In these circumstances, a safety assessment of DME is very important when DME is used on a large scale. There is a possibility that prolonged exposure in air induces autoxidation to produce explosive organic peroxides during transportation and storage of DME. Therefore, the reactivity of DME with oxygen and the mechanism of the autoxidation were investigated. Accelerating Rate Calorimetry (ARC) was used to evaluate the thermal stability of DME and DIPE, a known peroxide producers, under adiabatic and various atmospheric conditions. In ARC studies of DME under oxygen, exothermic decompositions were detected although its self-heating rate was low in comparison with DIPE. Oven storage tests were carried out and iodimetry was used to measure the concentration of peroxides produced from DME in comparison with DIPE and DEE. However, no products could be found for DME either by GC/MS or by iodimetry, while some evidence of autoxidation of both DEE and DIPE were obtained from these experiments.  相似文献   
2.
Paddy soils and sediments from the Yoneshirogawa, Omonogawa, and Koyoshigawa River Basins in Akita were analyzed for polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). The levels and compositions in those samples including soils from non-agricultural areas (non-agricultural soils) were investigated using isomer-specific analysis to determine characteristic sources. The PCDD/PCDF compositions in the samples were compared with respect to possible sources. The PCDD/PCDF concentrations in paddy soils were much higher than those in the non-agricultural soils and much higher than those found in other parts of Japan. Although PCDD/PCDFs were ubiquitous in sediments from river sources to mouths of the respective river basins, those concentrations were much lower than those from paddy soils and non-agricultural soils, and from other parts of Japan. Comparison of PCDD/PCDF homologues and isomer compositions for samples indicated that compositions of paddy soils and sediments, except for those from river sources, had similar characteristics to PCDD/PCDFs originating from impurities in herbicides, 2,4,6-trichlorophenyl 4-nitrophenyl ether (CNP) and pentachlorophenol (PCP), and that compositions of river-source sediments and non-agricultural soils resembled those of atmospheric depositions. Results of statistical analyses suggest that PCDD/PCDF contamination of paddy soils and sediments is attributable mainly to three sources: CNP, PCP, and atmospheric deposition. Results of this study also demonstrate that CNP and PCP are not only important contaminants of local areas of Japan, but that they exist throughout Akita, in northern Japan. We therefore conclude that PCDD/PCDF pollution caused by those compounds has a widespread influence on paddy soils and river sediments in Japan.  相似文献   
3.
For all countries analyzed so far, Material Flow Analysis/Accounting (MFA) studies indicate that the overall stock of materials within the economy is growing. Most are construction minerals such as asphalt, cement, sand and gravel, crushed stone, and other aggregates. In the analyses described in this paper, flows and stocks of construction minerals were estimated for Japan from the past to the future to elucidate: (1) the mechanisms by which construction minerals become waste, and (2) the future supply of and demand for recycled crushed stone. The following conclusions were drawn: (1) The amounts of waste construction minerals generated have been and will be at much lower levels than the domestic demand for construction minerals. These differences might indicate consistent growth of the stock of construction minerals, which will become waste in the future. However, certain amounts of materials that we account for as stock can be interpreted already in the environment as dead stock or dissipated waste; such materials can be called "missing stock" or "dissipated stock". Capturing that missing or dissipated stock is very important because it provides information that clarifies the environmental impacts and loss of resources that these materials cause; it allows estimation of appropriate future waste generation. (2) The amount of construction minerals that are recognized as waste was estimated to increase in the future. An imbalance in the supply of and demand for recycled crushed stone will likely occur in the near future if an expected decline in future road construction is considered.  相似文献   
4.
Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) have recently received attention due to their widespread contamination in the environment, as well as in wildlife and humans. We measured the PFOS and PFOA concentrations in historically recorded human serum samples at an age range between 20 and 59 years collected in Kyoto, 20 persons per each time point (n=100), and also the PFOS and PFOA concentrations in human serum samples at an age range between 20 and 59 years from 10 locations throughout Japan (n=200). The historical samples collected from 1983 to 1999 demonstrated that the PFOA concentrations in males and females from Kyoto have increased 4.4-fold and 4.3-fold at a rate of increase of 0.49 ng/ml/year and 0.42 ng/ml/year, respectively. In contrast, serum concentrations of PFOS reached a plateau in the late 1980s. There are also regional differences in both the PFOS and PFOA serum concentrations. The concentrations in serum [geometric mean (geometric standard deviation)] (ng/ml) in 2003-2004 ranged from 7.6(1.6) in the town of Matsuoka in Fukui prefecture to 27.8(1.6) in Kyoto city, and ranged from 2.3(1.5) in Matsuoka to 14.5(1.3) in Osaka city for PFOS and PFOA, respectively.  相似文献   
5.
In the Wasatch Range Metropolitan Area of Northern Utah, water management decision makers confront multiple forms of uncertainty and risk. Adapting to these uncertainties and risks is critical for maintaining the long‐term sustainability of the region's water supply. This study draws on interview data to assess the major challenges climatic and social changes pose to Utah's water future, as well as potential solutions. The study identifies the water management adaptation decision‐making space shaped by the interacting institutional, social, economic, political, and biophysical processes that enable and constrain sustainable water management. The study finds water managers and other water actors see challenges related to reallocating water, including equitable water transfers and stakeholder cooperation, addressing population growth, and locating additional water supplies, as more problematic than the challenges posed by climate change. Furthermore, there is significant disagreement between water actors over how to best adapt to both climatic and social changes. This study concludes with a discussion of the path dependencies that present challenges to adaptive water management decision making, as well as opportunities for the pursuit of a new water management paradigm based on soft‐path solutions. Such knowledge is useful for understanding the institutional and social adaptations needed for water management to successfully address future uncertainties and risks.  相似文献   
6.
This study focuses on analyses of greenhouse gas (GHG) emission reductions, from the perspective of interrelationships among time points and countries, in order to seek effective reductions. We assessed GHG emission reduction potentials and costs in 2020 and 2030 by country and sector, using a GHG emission reduction-assessment model of high resolution regarding region and technology, and of high consistency with intertemporal, interregional, and intersectoral relationships. Global GHG emission reduction potentials relative to baseline emissions in 2020 are 8.4, 14.7, and 18.9 GtCO2eq. at costs below 20, 50, and 100 $/tCO2eq., corresponding to +19, −2, and −7 %, respectively, relative to 2005. The emission reduction potential for 2030 is greater than that for 2020, mainly because many energy supply and energy-intensive technologies have long lifetimes and more of the current key facilities will be extant in 2020 than in 2030. The emission reduction potentials in 2030 are 12.6, 22.0, and 26.6 GtCO2eq. at costs below 20, 50, and 100 $/tCO2eq., corresponding to +19, −2, and −7 %, respectively, relative to 2005. The emission reduction potential for 2030 is greater than that for 2020, mainly because many energy supply and energy-intensive technologies have long lifetimes and more of the current key facilities will be extant in 2020 than in 2030. The emission reduction potentials in 2030 are 12.6, 22.0, and 26.6 GtCO2eq. at costs below 20, 50, and 100 /tCO2eq., corresponding to +33, +8, and −3 %, respectively, relative to 2005. Global emission reduction potentials at a cost below 50 $/tCO2eq. for nuclear power and carbon capture and storage are 2.3 and 2.2 GtCO2eq., respectively, relative to baseline emissions in 2030. Longer-term perspectives on GHG emission reductions toward 2030 will yield more cost-effective reduction scenarios for 2020 as well.  相似文献   
7.
A radioactivity survey was launched in 1991 to determine the background levels of 239+240Pu in the marine environment off a commercial spent nuclear fuel reprocessing plant before full operation of the facility. Particular attention was focused on the 240Pu/239Pu atom ratio in seawater and bottom sediment to identify the origins of Pu isotopes. The concentration of 239+240Pu was almost uniform in surface water, decreasing slowly over time. Conversely, the 239+240Pu concentration varied markedly in the bottom water and was dependent upon the sampling point, with higher concentrations of 239+240Pu observed in the bottom water sample at sampling points having greater depth. The 240Pu/239Pu atom ratio in the seawater and sediment samples was higher than that of global fallout Pu, and comparable with the data in the other sea area around Japan which has likely been affected by close-in fallout Pu originating from the Pacific Proving Grounds. The 240Pu/239Pu atom ratio in bottom sediment samples decreased with sea depth. The land-originated Pu is not considered as the reason of the increasing 239+240Pu concentration and also decreasing the 240Pu/239Pu atom ratio with sea depth, and further study is required to clarify it.  相似文献   
8.
Material stocks in economic society are considered to represent a reserve for wastes and secondary resources. From the viewpoints of proper disposal and reutilization of stocked materials, accurate estimation of the amount of materials that will emerge as wastes or secondary resources in the future is important. We defined materials that have a high probability of emerging as wastes or secondary resources as “potential wastes and secondary resources” and estimated that amount for construction minerals in Japan as a case study. The following conclusions were drawn. (1) We classified materials that are input into economic society into four categories: potential wastes and secondary resources, potential dissipated materials, dissipatively used materials, and permanent structures. By clarifying the latter three non-potential wastes and secondary resources, we performed a more accurate assessment of the wastes and secondary resources that will emerge in the future. (2) The share of potential wastes and secondary resources was estimated to be about 30% of all construction minerals that have been input into and accumulated in Japanese economic society. (3) Information related to potential dissipated materials and dissipatively used materials will provide fundamental knowledge to support analyses of the environmental impacts and resource losses which these materials might generate.  相似文献   
9.
Reactive volatile organic compounds (VOCs) are known to affect atmospheric chemistry. Biogenic VOCs (BVOCs) have a significant impact on regional air quality due to their large emission rates and high reactivities. Diterpenes (most particularly, kaur-16-ene) were detected in all of the 205 enclosure air samples collected over multiple seasons at two different sites from Cryptomeria japonica and Chamaecyparis obtusa trees, the dominant coniferous trees in Japan,. The emission rate of kaur-16-ene, was determined to be from 0.01 to 7.1 μg dwg−1 h−1 (average: 0.61 μg dwg−1 h−1) employing branch enclosure measurements using adsorbent sampling followed by solid phase-liquid extraction techniques. The emission rate was comparable to that of monoterpenes, which is known major BVOC emissions, collected from the same branches. In addition, total emission of kaur-16-ene at 30 °C was estimated to exceed that of total anthropogenic VOC emissions.  相似文献   
10.
Many of the numerous difficult issues facing the world today involve relationships entailing trade‐offs and synergies. This study quantitatively assesses some alternative scenarios using integrated assessment models, and provides several indicators relating to sustainable development and climate change, such as indicators of income (per capita GDP), poverty, water stress, food access, sustainable energy use, energy security, and ocean acidification, with high consistencies among the indicators within a scenario. According to the analyses, economic growth helps improve many of the indicators for sustainable development. On the other hand, climate change will induce some severe impacts such as ocean acidification under a non‐climate intervention scenario (baseline scenario). Deep emission reductions, such as to 2°C above the pre‐industrial level, could cause some sustainable development indicators to worsen. There are complex trade‐offs between climate change mitigation levels and several sustainable development indicators. A delicately balanced approach to economic growth will be necessary for sustainable development and responses to climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号