首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
综合类   1篇
基础理论   3篇
污染及防治   1篇
  2013年   1篇
  2010年   1篇
  2007年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
Donaldson JR  Lindroth RL 《Ecology》2007,88(3):729-739
Optimal defense theories suggest that a trade-off between defense costs and benefits maintains genetic variation within plant populations. This study assessed the independent and interactive effects of genetic- and environment-based variation in aspen leaf chemistry on insect performance, preference, and defoliation. Gypsy moth larvae were released into screenhouses containing eight aspen genotypes growing with high and low levels of nutrient availability. Plant chemistry, defoliation, and larval growth rates varied in response to genotype, nutrient availability, and their interaction. Total phenolic glycoside concentrations were inversely correlated with patterns of larval preference and were the best predictor of larval performance and defoliation among genotypes. Low-nutrient trees were less heavily defoliated and afforded decreased larval growth rates compared with high-nutrient trees. Nutrient availability mediated the defense benefits of phenolic glycosides, as plant chemistry explained significantly less variation in defoliation in low- compared with high-nutrient trees (7% vs. 44% of variation explained). These results suggest that spatial and temporal variation in resource availability may influence the relative magnitude of defense benefits in plants. Environmental mediation of the defense costs and benefits likely leads to diversifying selection and may maintain genetic polymorphisms in chemical defense traits in plant populations.  相似文献   
2.
Little is known about how plant nutritional and defensive qualities interact to influence predator–prey interactions. To address this need, we provided the neo-tropical milkweed, Asclepias curassavica, with two levels of nitrogen availability and examined how altered host-plant quality influenced the responses of a specialist aphid, Aphis nerii, and a coccinellid predator, Harmonia axyridis. Aphis nerii uses A. curassavica for multiple resources, including nutrition and sequestration of cardenolides for defense against natural enemies. Increased nitrogen availability improved A. curassavica quality by decreasing carbon-to-nitrogen (C:N) ratios and cardenolide concentrations, resulting in A. nerii that also had lower C:N ratios and cardenolide concentrations. Aphis nerii population growth was higher on plants with high nitrogen availability, compared with aphids on plants with low nitrogen availability. In no-choice feeding trials, Harmonia axyridis consumed more high C:N ratio aphids, suggesting a potential compensatory response to reduced aphid nutritional quality. Additionally, H. axyridis were able to consume more low-quality aphids at the expense of increasing exposure to increased cardenolide concentrations, suggesting that interactions between H. axyridis and A. nerii may be strongly influenced by prey nutritional quality. This work highlights the need to consider how variation in plant quality influences herbivore nutritional and defensive quality when examining mechanisms that influence predator–prey interactions.  相似文献   
3.
Atmospheric chemical composition affects foliar chemical composition, which in turn influences the dynamics of both herbivory and decomposition in ecosystems. We assessed the independent and interactive effects of CO2 and O3 fumigation on foliar chemistry of quaking aspen (Populus tremuloides) and paper birch (Betula papyrifera) at a Free-Air CO2 Enrichment (FACE) facility in northern Wisconsin. Leaf samples were collected at five time periods during a single growing season, and analyzed for nitrogen. starch and condensed tannin concentrations, nitrogen resorption efficiencies (NREs), and C:N ratios. Enriched CO2 reduced foliar nitrogen concentrations in aspen and birch; O3 only marginally reduced nitrogen concentrations. NREs were unaffected by pollution treatment in aspen, declined with 03 exposure in birch, and this decline was ameliorated by enriched CO2. C:N ratios of abscised leaves increased in response to enriched CO2 in both tree species. O3 did not significantly alter C:N ratios in aspen, although values tended to be higher in + CO2 + O3 leaves. For birch, O3 decreased C:N ratios under ambient CO2 and increased C:N ratios under elevated CO2. Thus, under the combined pollutants, the C:N ratios of both aspen and birch leaves were elevated above the averaged responses to the individual and independent trace gas treatments. Starch concentrations were largely unresponsive to CO2 and O3 treatments in aspen. but increased in response to elevated CO2 in birch. Levels of condensed tannins were negligibly affected by CO2 and O3 treatments in aspen, but increased in response to enriched CO2 in birch. Results from this work suggest that changes in foliar chemical composition elicited by enriched CO2 are likely to impact herbivory and decomposition, whereas the effects of O3 are likely to be minor, except in cases where they influence plant response to CO2.  相似文献   
4.
5.
Rhizophora mangle L. is a widespread mangrove species in the Western Hemisphere. Mangrove habitat loss and their importance to coastal and reef ecosystems make greater understanding of their genetic structure useful for conservation and management. An amplified fragment polymorphism (AFLP) analysis was performed on samples from Florida and the Caribbean to discover the genetic structure present. R. mangle had variable genetic diversity not related to latitude; P ranged 7 %–92 %. Some other factor, perhaps human impact, has caused low genetic diversity in some populations. Across Florida R. mangle populations varied in genetic diversity with less diversity (Gst?=?0.195) and greater gene flow on the Atlantic coast (Nm =2.07) than on the Gulf coast (Gst?=?0.717, Nm?=?0.197). Gene flow between Caribbean islands was low (Nm?=?0.386) compared to continental populations (Nm?=?1.40), indicating that long distance dispersal is not common between islands. Analysis of molecular variance (AMOVA) analysis showed significant deviations from Hardy-Weinberg expectations at the level of region among subpopulations and overall genetic difference among subpopulations for R. mangle. One implication for management is that small continental populations and island populations may be genetically isolated and distinct from each other.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号