首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   706篇
  免费   7篇
  国内免费   33篇
安全科学   9篇
废物处理   39篇
环保管理   40篇
综合类   50篇
基础理论   101篇
污染及防治   408篇
评价与监测   56篇
社会与环境   39篇
灾害及防治   4篇
  2023年   28篇
  2022年   150篇
  2021年   142篇
  2020年   46篇
  2019年   45篇
  2018年   40篇
  2017年   52篇
  2016年   43篇
  2015年   25篇
  2014年   35篇
  2013年   36篇
  2012年   21篇
  2011年   19篇
  2010年   7篇
  2009年   9篇
  2008年   10篇
  2007年   9篇
  2006年   6篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1985年   1篇
  1974年   1篇
排序方式: 共有746条查询结果,搜索用时 15 毫秒
1.
● Properties and performance relationship of CSBT photocatalyst were investigated. ● Properties of CSBT were controlled by simply manipulating glycerol content. ● Performance was linked to semiconducting and physicochemical properties. ● CSBT (W:G ratio 9:1) had better performance with lower energy consumption. ● Phenols were reduced by 48.30% at a cost of $2.4127 per unit volume of effluent. Understanding the relationship between the properties and performance of black titanium dioxide with core-shell structure (CSBT) for environmental remediation is crucial for improving its prospects in practical applications. In this study, CSBT was synthesized using a glycerol-assisted sol-gel approach. The effect of different water-to-glycerol ratios (W:G = 1:0, 9:1, 2:1, and 1:1) on the semiconducting and physicochemical properties of CSBT was investigated. The effectiveness of CSBT in removing phenolic compounds (PHCs) from real agro-industrial wastewater was studied. The CSBT synthesized with a W:G ratio of 9:1 has optimized properties for enhanced removal of PHCs. It has a distinct core-shell structure and an appropriate amount of Ti3+ cations (11.18%), which play a crucial role in enhancing the performance of CSBT. When exposed to visible light, the CSBT performed better: 48.30% of PHCs were removed after 180 min, compared to only 21.95% for TiO2 without core-shell structure. The CSBT consumed only 45.5235 kWh/m3 of electrical energy per order of magnitude and cost $2.4127 per unit volume of treated agro-industrial wastewater. Under the conditions tested, the CSBT demonstrated exceptional stability and reusability. The CSBT showed promising results in the treatment of phenols-containing agro-industrial wastewater.  相似文献   
2.
This paper discusses the findings of the first car MAX-DOAS (multi-axis differential optical absorption spectroscopy) field campaign (300 km long) along the National Highway-05 (N5-Highway) of Pakistan conducted on 13 and 14 November, 2012. The main objective of the field campaign was to assess the spatial distribution of tropospheric nitrogen dioxide (NO2) columns and corresponding concentrations along the N5-Highway from Islamabad to Lahore. Source identification of NO2 revealed that the concentrations were higher within major cities along the highway. The highest NO2 vertical column densities (NO2 VCDs) were found around two major cities of Rawalpindi and Lahore. This study also presents a comparison of NO2 VCDs measured by the ozone monitoring instrument (OMI) and car MAX-DOAS observations. The comparison revealed similar spatial distribution of the NO2 columns with both car MAX-DOAS and satellite observations, but the car MAX-DOAS observations show much more spatial details. Maximum NO2 VCD retrieved from car MAX-DOAS observations was up to an order of magnitude larger than the OMI observations in urban areas.  相似文献   
3.
Environmental Science and Pollution Research - This study utilized the Pooled Mean Group estimator to investigate the effect of renewable energy consumption, electricity consumption, economic...  相似文献   
4.
Environmental Science and Pollution Research - The Belt and Road Initiative (BRI) is closely linked to the ecological sustainability of the infrastructure ventures that intrinsically include the...  相似文献   
5.
Environmental Science and Pollution Research - Fruits are the valuable and important components of human diet. Among them, Prunus persica is a rich source of different minerals and dietary fibers....  相似文献   
6.
Environmental Science and Pollution Research - Silver nanoparticles are potent antimicrobials and could be used as a promising alternative of conventional antibiotics. The aim of this study was to...  相似文献   
7.
Environmental Science and Pollution Research - Smog pollution deteriorates environmental quality and has severe health risks. This affects the daily lives of people in China, particularly in urban...  相似文献   
8.
Environmental Science and Pollution Research - Maize tolerance potential to oil pollution was assessed by growing Zea mays in soil contaminated with varying levels of crude oil (0, 2.5 and...  相似文献   
9.
The diamondback moth, Plutella xylostella, is recognized as a widely distributed destructive insect pest of Brassica worldwide. The management of this pest is a serious issue, and an estimated annual cost of its management has reached approximately US$4 billion. Despite the fact that chemicals are a serious threat to the environment, lots of chemicals are applied for controlling various insect pests especially P. xylostella. An overreliance on chemical control has not only led to the evolution of resistance to insecticides and to a reduction of natural enemies but also has polluted various components of water, air, and soil ecosystem. In the present scenario, there is a need to implement an environmentally friendly integrated pest management (IPM) approach with new management tactics (microbial control, biological control, cultural control, mating disruption, insecticide rotation strategies, and plant resistance) for an alternative to chemical control. The IPM approach is not only economically beneficial but also reduces the environmental and health risks. The present review synthesizes published information on the insecticide resistance against P. xylostella and emphasizes on adopting an alternative environmentally friendly IPM approach for controlling P. xylostella in China.  相似文献   
10.
Nitrogen fertility and abiotic stresses management in cotton crop: a review   总被引:1,自引:0,他引:1  
This review outlines nitrogen (N) responses in crop production and potential management decisions to ameliorate abiotic stresses for better crop production. N is a primary constituent of the nucleotides and proteins that are essential for life. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. Therefore, increasing plant N use efficiency (NUE) is important for the development of sustainable agriculture. NUE has a key role in crop yield and can be enhanced by controlling loss of fertilizers by application of humic acid and natural polymers (hydrogels), having high water-holding capacity which can improve plant performance under field conditions. Abiotic stresses such as waterlogging, drought, heat, and salinity are the major limitations for successful crop production. Therefore, integrated management approaches such as addition of aminoethoxyvinylglycine (AVG), the film antitranspirant (di-1-p-menthene and pinolene) nutrients, hydrogels, and phytohormones may provide novel approaches to improve plant tolerance against abiotic stress-induced damage. Moreover, for plant breeders and molecular biologists, it is a challenge to develop cotton cultivars that can tolerate plant abiotic stresses while having high potential NUE for the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号