首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   2篇
污染及防治   1篇
  2022年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Environmentally sound management of the use of composts in agriculture relies on matching the rate of release of available N from compost-amended soils to the crop demand. To develop such management it is necessary to (i) characterize the properties of composts that control their rates of decomposition and release of N and (ii) determine the optimal amount of composts that should be applied annually to wheat (Triticum aestivum L.). Carbon and N mineralization were measured under controlled conditions to determine compost decomposition rate parameters, and the NCSOIL model was used to derive the organic wastes parameters that control the rates of N and C transformations in the soil. We also characterized the effect of a drying period to estimate the effects of the dry season on C and N dynamics in the soil. The optimized compost parameters were then used to predict mineral N concentration dynamics in a soil-wheat system after successive annual applications of compost. Sewage sludge compost (SSC) and cattle manure compost (CMC) mineralization characteristics showed similar partitioning into two components of differing ease of decomposition. The labile component accounted for 16 to 20% of total C and 11 to 14% of total N, and it decomposed at a rate of 2.4 x 10(-2) d(-1), whereas the resistant pool had a decomposition rate constant of 1.2 to 1.4 x 10(-4) d(-1). The main differences between the two composts resulted from their total C and N and inorganic N contents, which were determined analytically. The long-term effect of a drying period on C and N mineralization was negligible. Use of these optimization results in a simulation of compost mineralization under a wheat crop, with a modified plant-effect version of the NCSOIL model, enabled us to evaluate the effects of the following factors on the C and N dynamics in soil: (i) soil temperature, (ii) mineral N uptake by plants, and (iii) release of very labile organic C in root exudates. This labile organic C enhanced N immobilization following application, and so decreased the N available for uptake by plants.  相似文献   
2.
The overall objective of the present study was to determine the loading limits of composts that should be applied annually to irrigated wheat. We conducted a container experiment in a greenhouse during four years. It included eight treatments: sewage sludge compost (SSC) and cattle manure compost (CMC), each applied annually to a sandy soil, at rates equivalent to 3, 6, and 12 kg m(-2), and two controls, one fertilized and one unfertilized. Total dry matter (DM), grain production, and the amount of N, P, and K taken up by plants increased with increasing compost rate. Nitrogen uptake by the plants of the fertilized control was much higher than by the plants of the highest compost rate. Phosphorus and K uptake by the plants amended with the highest compost rate was much higher than by the fertilized control plants. Inorganic N quantity in the soil increased with increasing compost rate and with successive applications. The net N mineralization during the first year of wheat growth was very low, less than 3.5% of the applied organic N under all compost application rates. The contribution of the organic N mineralization increased during the second and third years. Most of the N increase in the compost treatment was found in the upper layer of 0 to 15 cm, whereas in the fertilized treatment N accumulated from the surface to the bottom of the container, 0 to 55 cm. The successive application of high rates of composts resulted in P and K accumulation in the soil profile.  相似文献   
3.

Since the beginning of the Industrial Revolution, the manufacturing industry has been crucial for economic growth. China’s manufacturing activity began after China approved and opened legal reform to the rest of the world in 1978. There are usually three stages of development, including the catch-up period. At the same time, they reflect the private economic sector, manufacturing, and foreign exchange industries, and the opening up to the international markets. This advancement comes along with high energy consumption, leading to a high rate of pollution. Therefore, this study provides a detailed overview of the “Made in China 2025” pilot target and implementations of policies to achieve a carbon-neutral goal. We assessed the efficiency of implementing policies in the Chinese manufacturing sector and recommended decision-making policies to achieve the “Made in China 2025” plan and the 2030 carbon-neutral goal. The Quantitative Strategic Programming Matrix (QSPM) and SWOT analysis matrix were used to put forward some development strategies to transform and upgrade China’s manufacturing industry by combining relevant strategic theories. This study is significant in terms of energy-saving and carbon emission-reducing policy implementations for the Chinese manufacturing industry. In addition, we suggested some measures to achieve a sustainable environment in line with carbon-neutral policies.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号