排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Azinphos-methyl is an organophosphate insecticide used for pest control on a number of food crops in many parts of the world. The snail Biomphalaria glabrata is a freshwater gastropod widely distributed in South America, Central America and Africa. The aim of the present work was to investigate whether azinphos-methyl causes alterations in the reproduction of B. glabrata. To this end, gastropod pigmented specimens were exposed to various concentrations of the insecticide (0.021, 0.5, 2.5, and 5 mg L−1) for either 2 or 14 d. Along 14 d, several reproduction parameters and cholinesterase (ChE) activity were evaluated. In each group, the number of egg masses, the number of eggs per mass, the number of hatchings, the time to hatching, and the survival of the offspring after one month of treatment was evaluated. The results showed that, depending on the concentration and time of exposure, azinphos-methyl induced alterations in the reproduction of B. glabrata. These alterations were mainly represented by a decrease in the number of egg masses, and, in some cases, by a lower number or even the total absence of hatchings. Thus, the gastropods exposed to 2.5 and 5 mg L−1 of azinphos-methyl for 14 d showed ChE inhibitions higher than 35% along time and completely lost their ability to reproduce. On the other hand, exposure to high acute concentrations or exposure to low concentrations for 14 d resulted in ChE inhibition equal to or lower than 35% between 7 and 14 d of treatment and similar alterations in reproduction. These were represented by a decrease in the number of egg masses. At low pestice levels, the number of egg masses and the number of offspring resulted to be more sensitive biomarkers than ChE inhibition. It is concluded that the insecticide azinphos-methyl can cause a decline in the reproductive performance of B. glabrata. 相似文献
2.
In this study, the cholinesterase (ChE) and carboxylesterase (CES) activities present in whole organism homogenates from Planorbarius corneus and their in vitro sensitivity to organophosphorous (OP) pesticides were studied. Firstly, a characterization of ChE and CES activities using different substrates and selective inhibitors was performed. Secondly, the effects of azinphos-methyl oxon (AZM-oxon) and chlorpyrifos oxon (CPF-oxon), the active oxygen analogs of the OP insecticides AZM and CPF, on ChE and CES activities were evaluated. Finally, it was analyzed whether binary mixtures of the pesticide oxons cause additive, antagonistic or synergistic ChE inhibition in P. corneus homogenates. The results showed that the extracts of P. corneus preferentially hydrolyzed acetylthiocholine (AcSCh) over propionylthiocholine (PrSCh) and butyrylthiocholine (BuSCh). Besides, AcSCh hydrolyzing activity was inhibited by low concentrations of BW284c51, a selective inhibitor of AChE activity, and also by high concentrations of substrate. These facts suggest the presence of a typical AChE activity in this species. However, the different dose-response curves observed with BW284c51 when using PrSCh or BuSCh instead of AcSCh suggest the presence of at least another ChE activity. This would probably correspond to an atypical BuChE. Regarding CES activity, the highest specific activity was obtained when using 2-naphthyl acetate (2-NA), followed by 1-naphthyl acetate (1-NA); p-nitrophenyl acetate (p-NPA), and p-nitrophenyl butyrate (p-NPB). The comparison of the IC(50) values revealed that, regardless of the substrate used, CES activity was approximately one order of magnitude more sensitive to AZM-oxon than ChE activity. Although ChE activity was very sensitive to CPF-oxon, CES activity measured with 1-NA, 2-NA, and p-NPA was poorly inhibited by this pesticide. In contrast, CES activity measured with p-NPB was equally sensitive to CPF-oxon than ChE activity. Several specific binary combinations of AZM-oxon and CPF-oxon caused a synergistic effect on the ChE inhibition in P. corneus homogenates. The degree of synergism tended to increase as the ratio of AZM-oxon to CPF-oxon decreased. These results suggest that synergism is likely to occur in P. corneus snails exposed in vivo to binary mixtures of the OPs AZM and CPF. 相似文献
3.
Kim D. MacFarlane David A. Cacciatore Daniel P. Leigh Michael G. Yurovsky Amena Atta 《补救:环境净化治理成本、技术与工艺杂志》2011,22(1):29-41
In the 1960s, trichloroethene (TCE) was used at what is now designated as Installation Restoration Program Site 32 Cluster at Vandenberg Air Force Base to flush missile engines prior to launch and perhaps for other degreasing activities, resulting in releases of TCE to groundwater. The TCE plume extends approximately 1 kilometer from the previous launch facilities beyond the southwestern end of the site. To limit further migration of TCE and chlorinated degradation by‐products, an in situ, permeable, reactive bioremediation barrier (biobarrier) was designed as a cost‐effective treatment technology to address the TCE plume emanating from the source area. The biobarrier treatment would involve injecting carbon‐based substrate and microbes to achieve reductive dechlorination of volatile organic compounds, such as TCE. Under reducing conditions and in the presence of certain dechlorinating microorganisms, TCE degrades to nontoxic ethene in groundwater. To support the design of the full‐scale biobarrier, a pilot test was conducted to evaluate site conditions and collect pertinent design data. The pilot test results indicated possible substrate delivery difficulties and a smaller radius of influence than had been estimated, which would be used to determine the final biobarrier well spacing. Based on these results, the full‐scale biobarrier design was modified. In January 2010, the biobarrier was implemented at the toe of the source area by adding a fermentable substrate and a dechlorinating microbial culture to the subsurface via an injection well array that spanned the width of the TCE plume. After the injections, the groundwater pH in the injection wells continued to decrease to a level that could be detrimental to the population of Dehalococcoides in the SDC‐9TM culture. In addition, 7 months postinjection, the injection wells could not be sampled due to fouling. Cleaning was required to restore their functions. Bioassay and polymerase chain reaction analyses were conducted, as well as titration tests, to assess the need for biobarrier amendments in response to the fouling issues and low pH. Additionally, slug tests were performed on three wells to evaluate possible localized differences in hydraulic conductivity within the biobarrier. Based on the test results, the biobarrier was amended with sodium carbonate and inoculated a second time with SDC‐9TM. The aquifer pH was restored, and reductive dechlorination resumed in the treatment zone, evidenced by the reduction in TCE and the increase in degradation products, including ethene. © 2011 Wiley Periodicals, Inc. 相似文献
1