首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
废物处理   2篇
环保管理   1篇
综合类   1篇
污染及防治   7篇
灾害及防治   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2017年   2篇
  2016年   2篇
  2007年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Tyre recycling has become a necessity because of the huge piles of tyres that represent a threat to the environment. The used tyres represent a source of energy and valuable chemical products. Waste tyres were pyrolysed catalytically in a batch reactor under atmospheric pressure. Calcium carbide was used as a catalyst to explore its effect on pyrolysis product distribution. The effect of temperature, amount of catalyst and time on the yields of the pyrolysed products was investigated. Char yield decreased with increase of pyrolysis temperature while total gas and liquid yields increased. The liquid fraction was obtained with boiling point up to 320 °C. The physical and chemical properties of the pyrolysed products obtained were characterized. The catalytic pyrolysis produced 45 wt.% aromatic, 35 wt.% aliphatic and 20 wt.% of polar hydrocarbons. The distillation data showed that ∼80% of oil has boiling point below 270 °C which is the boiling point for 50% of distilled product in commercial diesel oil. The oil fraction was found to have high gross calorific value; GCV (42.8 MJ kg−1). Its Specific gravity, viscosity, Kinematic viscosity, freezing point and diesel index were also within the limits of diesel fuel. The char residues were studied to investigate their characteristics for use as a possible adsorbent. Surface area of char before and after acid demineralization was determined to determine the adsorptive features for waste water treatment.  相似文献   
2.
Environmental Science and Pollution Research - Knowledge of the behavior of highly compacted expansive clays, as an engineered barrier, in disposal of high-level nuclear waste (HLW) systems to...  相似文献   
3.
4.
Haq  Fazal  Yu  Haojie  Wang  Yang  Wang  Li  Mehmood  Sahid  Haroon  Muhammad  Bilal-Ul-Amin  Fahad  Shah  Uddin  Md. Alim  Shen  Di 《Journal of Polymers and the Environment》2021,29(8):2676-2685
Journal of Polymers and the Environment - Succinylated starches (SS) were prepared by the reaction of normal starch (NS) and porous starch (PS) with succinic anhydride (SA) in the presence of DMF...  相似文献   
5.
Environmental Science and Pollution Research - Based on the panel data of 30 provinces (except for Tibet, Hong Kong, Macao, and Taiwan) in China from 2005 to 2016, a nonlinear threshold regression...  相似文献   
6.
Environmental Science and Pollution Research - This study aims to evaluate the environmental performance of small and medium-sized enterprises (SMEs) through green human resource...  相似文献   
7.

Cadmium (Cd) in agricultural soil negatively affects crops yield and compromises food safety. Remediation of polluted soil is necessary for the re-establishment of sustainable agriculture and to prevent hazards to human health and environmental pollution. Phytoremediation is a promising technology for decontamination of polluted soil. The present study investigated the effect of molybdenum (Mo) (0.5, 1.0 and 2.0 ppm) on endogenous production of total phenolics and free proline, plant biomass and photosynthetic pigments in Ricinus communis plants grown in Cd (25, 50 and 100 ppm) contaminated soils and the potential for Cd phytoextraction. Mo was applied via seed soaking, soil addition and foliar spray. Foliar sprays significantly increased plant biomass, Cd accumulation and bioconcentration. Phenolic concentrations showed significantly positive correlations with Cd accumulation in roots (R 2 = 0.793, 0.807 and 0.739) and leaves (R 2 = 0.707, 721 and 0.866). Similarly, proline was significantly positively correlated with Cd accumulation in roots (R 2 = 0.668, 0.694 and 0.673) and leaves (R 2 = 0.831, 0.964 and 0.930). Foliar application was found to be the most effective way to deliver Mo in terms of increase in plant growth, Cd accumulation and production of phenolics and proline.

  相似文献   
8.
Cotton (Gossypium hirustum L.) is grown globally as a major source of natural fiber. Nitrogen (N) management is cumbersome in cotton production systems; it has more impacts on yield, maturity, and lint quality of a cotton crop than other primary plant nutrient. Application and production of N fertilizers consume large amounts of energy, and excess application can cause environmental concerns, i.e., nitrate in ground water, and the production of nitrous oxide a highly potent greenhouse gas (GHG) to the atmosphere, which is a global concern. Therefore, improving nitrogen use efficiency (NUE) of cotton plant is critical in this context. Slow-release fertilizers (e.g., polymer-coated urea) have the potential to increase cotton yield and reduce environmental pollution due to more efficient use of nutrients. Limited literature is available on the mitigation of GHG emissions for cotton production. Therefore, this review focuses on the role of N fertilization, in cotton growth and GHG emission management strategies, and will assess, justify, and organize the researchable priorities. Nitrate and ammonium nitrogen are essential nutrients for successful crop production. Ammonia (NH3) is a central intermediate in plant N metabolism. NH3 is assimilated in cotton by the mediation of glutamine synthetase, glutamine (z-) oxoglutarate amino-transferase enzyme systems in two steps: the first step requires adenosine triphosphate (ATP) to add NH3 to glutamate to form glutamine (Gln), and the second step transfers the NH3 from glutamine (Gln) to α-ketoglutarate to form two glutamates. Once NH3 has been incorporated into glutamate, it can be transferred to other carbon skeletons by various transaminases to form additional amino acids. The glutamate and glutamine formed can rapidly be used for the synthesis of low-molecular-weight organic N compounds (LMWONCs) such as amides, amino acids, ureides, amines, and peptides that are further synthesized into high-molecular-weight organic N compounds (HMWONCs) such as proteins and nucleic acids.  相似文献   
9.
The paper outlines a concept and proposal for the formation of ‘community based adaptation committees’ (CBACs) at the micro-level, and it explains how such local committees would act with respect to the existing organisation of disaster management in Bangladesh. It examines how the CBACs would be sustained locally without colliding with the present system of government. The main objective of this is to identify how the CBACs could act independently as per local demands, without any conflict with the existing system, in order to ensure sustainable adaptation in future. To achieve these objectives the author conducted interviews with key informants at both local and national levels, and also conducted eight participatory rapid appraisal sessions at eight coastal communities. The author finds that severe corruption is impeding the existing system of relief and rehabilitation at community levels. The paper emphasises that the government of Bangladesh urgently needs to formulate a national adaptation policy, and that within that policy the concept of CBACs at community level should be prioritised. This would provide the government with guidelines for the use, at community level, of adaptation funds from developed countries in order to reduce future vulnerability in Bangladesh.  相似文献   
10.
Natural energy sources like petrol and diesel are going to be diminished in the coming future which will lead to increase in the prices and demands of fossil fuels. Therefore, it is important to find a sustainable alternate of fossil fuels. Bioethanol is one of the alternatives, which is produced from different feedstocks including sugar-based, starch-based and lignocellulose-based materials through fermentation. Since sugar-based (sugar cane and sugar beet) and starch-based (corn) materials are sources of staple food, therefore, research on lignocellulosic materials for bioethanol production is a subject of recent studies. Ethanol production from lignocellulosic materials involves different steps, such as pretreatment, hydrolysis, followed by fermentation process and finally ethanol purification. In this review, we have summarized the recent progresses in bioethanol production and processing from lignocellulosic materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号