首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
污染及防治   6篇
  2012年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  1974年   1篇
排序方式: 共有6条查询结果,搜索用时 453 毫秒
1
1.
The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis.  相似文献   
2.
Methanosarcina species with a high maximum specific growth rate (mumax) and high half-saturation coefficient (KS) and Methanosaeta species with a low mumax and low KS are the only known aceticlastic methanogens. Because of Methanosaeta's low KS, the low acetate concentrations in conventional, mesophilic anaerobic digestion yield Methanosaeta dominance. However, Methanosarcina absorbs increases in acetate more efficiently and thus promotes more stable digestion. This paper tests the hypothesis that decreasing digester feeding frequencies can increase Methanosarcina predominance. Two acetate-fed reactors were established at a 17-day solids retention time. One reactor was fed hourly, and one was fed once daily. Microscopic and molecular methods were used to verify that the hourly fed reactor enriched for Methanosaeta, while the daily fed reactor enriched for Methanosarcina. Growth and substrate-use kinetics were measured for each reactor. A digester overload condition was simulated, and the Methanosarcina-enriched reactor was found to perform better than the Methanosaeta-enriched reactor. These findings indicate that Methanosarcina dominance can be achieved with infrequent feedings, leading to more stable digestion.  相似文献   
3.
The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to account for a newly defined readily biodegradable substrate that can be consumed by polyphosphate-accumulating organisms (PAOs) under anoxic and aerobic conditions, but not under anaerobic conditions. The model change was to add a new substrate component and process terms for its use by PAOs and other heterotrophic bacteria under anoxic and aerobic conditions. The Gdansk (Poland) wastewater treatment plant (WWTP), which has a modified University of Cape Town (MUCT) process for nutrient removal, provided field data and mixed liquor for batch tests for model evaluation. The original ASM2d was first calibrated under dynamic conditions with the results of batch tests with settled wastewater and mixed liquor, in which nitrate-uptake rates, phosphorus-release rates, and anoxic phosphorus uptake rates were followed. Model validation was conducted with data from a 96-hour measurement campaign in the full-scale WWTP. The results of similar batch tests with ethanol and fusel oil as the external carbon sources were used to adjust kinetic and stoichiometric coefficients in the expanded ASM2d. Both models were compared based on their predictions of the effect of adding supplemental carbon to the anoxic zone of an MUCT process. In comparison with the ASM2d, the new model better predicted the anoxic behaviors of carbonaceous oxygen demand, nitrate-nitrogen (NO3-N), and phosphorous (PO4-P) in batch experiments with ethanol and fusel oil. However, when simulating ethanol addition to the anoxic zone of a full-scale biological nutrient removal facility, both models predicted similar effluent NO3-N concentrations (6.6 to 6.9 g N/m3). For the particular application, effective enhanced biological phosphorus removal was predicted by both models with external carbon addition but, for the new model, the effluent PO4-P concentration was approximately one-half of that found from ASM2d. On a PO4-P removal percentage basis, the difference was small, that is, 94.1 vs. 97.1%, respectively, for the ASM2d and expanded ASM2d.  相似文献   
4.
Performance and stability of two-stage anaerobic digestion.   总被引:1,自引:0,他引:1  
The stability, capacity, and solids destruction efficiency of single versus two-stage anaerobic digestion was studied in bench-scale reactors using combined waste activated and primary sludge. Laboratory staged mesophilic digesters showed an improved volatile solids and volatile suspended solids destruction efficiency over a single-stage system (at the same total solids retention time [SRT]) of approximately 3.2 and 5.8 percentage points, respectively. To quantify stability and capacity, a new digester monitoring method was introduced that measured the digester maximum acetate utilization capacity, V(max,ac), and was used to investigate the potential for digester instability at different transient loadings. The ratio of the V(max,ac) value to the estimated acetate production rate for a given digester loading was termed the acetate capacity number (ACN). Values greater than 1.0 indicate excess acetate utilization capacity. The first stage of the laboratory two-stage mesophilic system (10-day SRT for each stage) had an ACN number of 1.3 compared with a value of 1.8 for the single-stage 20-day SRT digester. Thus, while a staged mesophilic system can improve solids destruction efficiency, it demonstrates a lower capacity for metabolizing highly variable loads.  相似文献   
5.
6.
Recuperative thickening of anaerobic digester sludge (thickening with solids return) yields increased digester capacity. Common thickening methods cause oxygen exposure to the digester sludge. This study evaluated the effects of various levels of oxygen exposure on the acetoclastic methanogens. Gravity belt thickening had no detrimental effect on the acetoclastic activity. From a 7-day batch test with continuous oxygen exposure of digester sludge, a 12% loss in acetoclastic activity was predicted for a digester with a 20-day solids retention time (SRT) and 100% recycle with recuperative thickening via dissolved air flotation thickening. However, a greater loss (27%) was found from a long-term, bench-scale digester operated under similar conditions. This loss did not affect the digester performance, as measured by volatile solids destruction. This research suggests that recuperative thickening may not affect digester performance at a long SRT with constant operation, but may change the reserve capacity of the anaerobic community.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号