Critical N loads for ombrotrophic bogs, which often contain rare and N-sensitive plants (especially those in lower plant groups: lichens, mosses and liverworts), are based on very few experimental data from measured, low background N deposition areas. Additionally the relative effects of reduced versus oxidised N are largely unknown. This paper describes an automated field exposure system (30 km S. of Edinburgh, Scotland) for treating ombrotrophic bog vegetation with fine droplets of oxidised N (NaNO3) and reduced N (NH4Cl). Whim Moss exists in an area of low ambient N deposition (ca. 8 kg N ha?1 y?1), the sources and quantification of which are described. The wet N treatment system is run continuously, and is controlled/activated by wind speed and rainfall to provide a unique simulation of “real worl” treatment patterns (no rain=no treatment). Simulated precipitation is supplied at ionic concentrations below 4 mM in rainwater collected on site. Treatments provide a replicated dose response to 16, 32 and 64 kg N ha?1 y?1 adjusted for ambient deposition (8 kg N ha?1 y?1). The 16 and 64 kg N ha?1 y?1 are duplicated with a P+K supplement. Baseline soil chemistry and foliar nutrient status was established for all 44 plots for Calluna vulgaris, Sphagnum capillifolium, Hypnum jutlandicum and Cladonia portentosa.相似文献
Benthic invertebrates collected from an acid (pH 3.2) and an alkaline (pH 7.9) tailing pond in the Rouyn-Noranda mining region were compared with those of a control pond in order to assess the effects of the pH on the benthic community structure and on metal accumulation by invertebrates. The acid pond showed high mean soluble concentrations of aluminium (2600 ppb), copper (230 ppb), iron (6500 ppb) and zinc (4900 ppb) in the water and high mean concentrations of copper (340 ppm), iron (15,238 ppm) and zinc (445 ppm) in the sediments. The benthic fauna was dominated by Chironomus spp and the water beetle Ilybius sp. The Shannon-Weaver diversity index was 0.04. The alkaline pond had high mean sediment concentrations of cadmium (21 ppm), iron (15,823 ppm), manganese (658 ppm) and nickel (146 ppm). A total of 37 insect genera and a diversity index of 3.4 were recorded for this pond. Of the seven metals studied only copper and aluminium showed greater accumulations in the biota of the contaminated ponds than in that of the control. Insects dominated the benthic fauna in both contaminated ponds and crustacea in the control. 相似文献
The use of a quantitative population growth model to investigate the persistence of South African elephant populations is explored. The model provides quantitative assessments of population persistence and confidence intervals for estimated parameters based purely on population size estimates. The analysis supports the view that most of the larger populations in the region are secure. This view is further supported by a lack of density dependent effects in most of the recovering populations and the high population rates of increase observed. This predominantly positive prognosis is in contrast with that emerging from most of the rest of the African continent where the populations are under greater threat because of habitat restriction and direct human conflict. This preliminary assessment of elephant population persistence suggests that “viable” populations may lie between 400 and 6000 individuals. Although not inconsistent with information-greedy genetic and demographic models, the relationship between population growth versus genetic and demographic models should be further investigated. The implementation of a metapopulation management strategy towards these smaller populations is advocated. In addition, as all of the populations included in this analysis have been afforded some degree of protection since the 1920s, continued protection would be a prerequisite for their continued survival. 相似文献
Explorations of future land use change are important to understand potential conflicts between competing land uses, trade-offs associated with particular land change trajectories, and the effectiveness of policies to steer land systems into desirable states. Most model-based explorations and scenario studies focused on conversions in broad land use classes, but disregarded changes in land management or focused on individual sectors only. Using the European Union (EU) as a case study, we developed an approach to identifying typical combinations of land cover and management changes by combining the results of multimodel simulations in the agriculture and forest sectors for four scenarios from 2000 to 2040. We visualized land change trajectories by mapping regional hotspots of change. Land change trajectories differed in extent and spatial pattern across the EU and among scenarios, indicating trajectory-specific option spaces for alternative land system outcomes. In spite of the large variation in the area of change, similar hotspots of land change were observed among the scenarios. All scenarios indicate a stronger polarization of land use in Europe, with a loss of multifunctional landscapes. We analyzed locations subject to change by comparing location characteristics associated with certain land change trajectories. Results indicate differences in the location conditions of different land change trajectories, with diverging impacts on ecosystem service provisioning. Policy and planning for future land use needs to account for the spatial variation of land change trajectories to achieve both overarching and location-specific targets.
This paper tests the hypothesis that relocation of pig production within the EU27 can reduce the external costs of nitrogen (N) pollution. The external cost of pollution by ammonia and nitrate from agriculture in the European Union (EU27) in 2008 was estimated at 61–215 billion € (0.5 to 1.8% of the GDP). Per capita it ranged from more than 1000 € in north-west EU27 to 50 € in Romania. The average contribution of pig production was 15%. Using provincial data (224 NUTS2 regions in EU27), the potential reduction of external N cost by relocation of pig production was estimated at 14 billion € (10% of the total). Regions most eligible for decreasing the pig stock were in western Germany, Flemish region, Denmark, the Netherlands and Bretagne, while Romania is most eligible for increasing pig production. Relocating 20 million pigs (13% of the total EU stock) decreased average external costs per capita from 900 to 785 € in the 13 NUTS2 regions where pigs were removed and increased from 69 to 107 € in 11 regions receiving pigs. A second alternative configuration of pig production was targeted at reducing exceedance of critical N deposition and closing regional nutrient cycles. This configuration relocates pigs within Germany and France, for example from Bretagne to Northern France and from Weser-Ems to Oberbayern. However, total external cost increases due to an increase of health impacts, unless when combined with implementation of best N management practices. Relocation of the pig industry in the EU27 will meet many socio-economic barriers and realisation requires new policy incentives. 相似文献