Amino acids constitute one of the largest inputs of organic nitrogen (N) to most polar soils and have been hypothesized to be important in regulating vegetational succession and productivity in Arctic ecosystems. Our understanding of amino acid cycling in these soils, however, is poor. The aim of this study was to investigate the size and rate of turnover of the amino acid pool in a range of Arctic and Antarctic soils. Our results indicate that in polar soils with either high or low ornithogenic inputs the amino acid pool is small in comparison to the inorganic N pool (NO–3 and NH+4). The free amino acid pool constituted only a small proportion of the total dissolved organic nitrogen (DON) pool in these soils. Here we show that these low concentrations may be due to rapid use by the soil microbial community in both Arctic and Antarctic soils. The turnover of the amino acid pool in soil was extremely rapid, with a half-life ranging from 2 to 24 h, indicating that this N pool can be turned over many hundred times each summer when polar soils are frequently unfrozen. The implications of amino acids in N cycling and plant and microbial nutrition are discussed. 相似文献
Amino acids constitute one of the largest inputs of organic nitrogen (N) to most polar soils and have been hypothesized to be important in regulating vegetational succession and productivity in Arctic ecosystems. Our understanding of amino acid cycling in these soils, however, is poor. The aim of this study was to investigate the size and rate of turnover of the amino acid pool in a range of Arctic and Antarctic soils. Our results indicate that in polar soils with either high or low ornithogenic inputs the amino acid pool is small in comparison to the inorganic N pool (NO?3 and NH+4). The free amino acid pool constituted only a small proportion of the total dissolved organic nitrogen (DON) pool in these soils. Here we show that these low concentrations may be due to rapid use by the soil microbial community in both Arctic and Antarctic soils. The turnover of the amino acid pool in soil was extremely rapid, with a half-life ranging from 2 to 24 h, indicating that this N pool can be turned over many hundred times each summer when polar soils are frequently unfrozen. The implications of amino acids in N cycling and plant and microbial nutrition are discussed. 相似文献
It has long been known that mining activity can markedly change the level and distribution of certain heavy metals in the adjacent environment. This pollution can be quite widespread and long lasting and often has deleterious effects on the health of local populations. In the present study scalp hair was used as the biopsy material because of its ease of collection and long history of use in this connection. Hair was collected from all the local villages in the vicinity of the mine site, as well as from Papua New Guinean nationals from other provinces, and European expatriates who were employed by the mining company and who were resident in the area. Hair from local people showed a remarkably high iron content by comparison with previously studied populations. The extreme variations in hair iron levels were reflected in the differential distribution of levels according to location, age and sex. Hair cadmium was also high in the population studied. Hair copper, lead, zinc and mercury all appeared to be within 'normal' limits by comparison with other general populations. These results are discussed in the context of the environmental and social impact of the mining operations on the local people. 相似文献
Adaptation research has changed significantly in recent years as funders and researchers seek to encourage greater impact, ensure value for money and promote interdisciplinarity across the natural and social sciences. While these developments are inherently positive, they also bring fresh challenges. With this in mind, this paper presents an agenda for the next generation of climate adaptation research for development. The agenda is based on insights from a dialogue session held at the 2016 Adaptation Futures conference as well as drawing on the collective experience of the authors. We propose five key areas that need to be changed in order to meet the needs of future adaptation research, namely: increasing transparency and consultation in research design; encouraging innovation in the design and delivery of adaptation research programmes; demonstrating impact on the ground; addressing incentive structures; and promoting more effective brokering, knowledge management and learning. As new international funding initiatives start to take shape, we underscore the importance of learning from past experiences and scaling-up of successful innovations in research funding models.
Understanding how cities can transform organic waste into a valuable resource is critical to urban sustainability. The capture and recycling of phosphorus (P), and other essential nutrients, from human excreta is particularly important as an alternative organic fertilizer source for agriculture. However, the complex set of socio-environmental factors influencing urban human excreta management is not yet sufficiently integrated into sustainable P research. Here, we synthesize information about the pathways P can take through urban sanitation systems along with barriers and facilitators to P recycling across cities. We examine five case study cities by using a sanitation chains approach: Accra, Ghana; Buenos Aires, Argentina; Beijing, China; Baltimore, USA; and London, England. Our cross-city comparison shows that London and Baltimore recycle a larger percentage of P from human excreta back to agricultural lands than other cities, and that there is a large diversity in socio-environmental factors that affect the patterns of recycling observed across cities. Our research highlights conditions that may be “necessary but not sufficient” for P recycling, including access to capital resources. Path dependencies of large sanitation infrastructure investments in the Global North contrast with rapidly urbanizing cities in the Global South, which present opportunities for alternative sanitation development pathways. Understanding such city-specific social and environmental barriers to P recycling options could help address multiple interacting societal objectives related to sanitation and provide options for satisfying global agricultural nutrient demand.
Biogenic volatile organic compounds (BVOCs) play an important role in atmospheric chemistry and the carbon cycle. Isoprene is quantitatively the most important of the non-methane BVOCs (NMBVOCs), with an annual emission of about 400–600 TgC; about 90% of this is emitted by terrestrial plants. Incorporating a mechanistic treatment of isoprene emissions within land-surface schemes has recently become a focus for the modelling community, the aim being to quantify the potential magnitude of associated climate feedbacks. However, these efforts are hampered by major uncertainties about why plants emit isoprene and the relative importance of different environmental controls on isoprene emission. The availability and reliability of observations of isoprene fluxes from different types of vegetation is limited, and this also imposes constraints on model development. Nevertheless, progress is being made towards the development of mechanistic models of isoprene emission which, in conjunction with atmospheric chemistry models, will ultimately allow improved quantification of the feedbacks between the terrestrial biosphere and climate under past and future climate states. 相似文献
Ambio - Muskoxen (Ovibos moschatus) are an integral component of Arctic biodiversity. Given low genetic diversity, their ability to respond to future and rapid Arctic change is unknown, although... 相似文献
Environmental Science and Pollution Research - The objective of this study was to monitor a newly constructed wetland (CW) in north Wales, UK, to assess whether it contributes to an improvement in... 相似文献