首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
污染及防治   1篇
评价与监测   1篇
灾害及防治   1篇
  2012年   1篇
  2000年   1篇
  1982年   1篇
排序方式: 共有3条查询结果,搜索用时 584 毫秒
1
1.
2.
Solid phase micro extraction (SPME) was applied to the determination of selected trihalomethanes (THMs), chloroform, bromodichloromethane, dibromochloromethane, bromoform, in potable and recreational waters. The selected samples were environmentally significant due to mandatory limits imposed by regulatory agencies. Extraction of the analytes was performed using headspace SPME (fused silica fibre with a 100 microm poly(dimethylsiloxane coating) followed by thermal desorption at 220 degrees C and GC-MS analysis. A linear working range of 10-160 microg/l was established with relative standard deviations (%RSD) within the range, 0.9-19%. Limits of detection (LOD) were 1.0-2.8 microg/l. The highest THM concentration was 61.8 microg/l which was well within the proposed European Union directive of 100 microg/l. The total THMs determined in swimming pool waters ranged from 105-134 microg/l, with chloroform accounting for 84-86% of total THM.  相似文献   
3.
As a result of extensive gold and silver mining in the Mojave Desert, southern California, mine wastes and tailings containing highly elevated arsenic (As) concentrations remain exposed at a number of former mining sites. Decades of weathering and erosion have contributed to the mobilization of As-enriched tailings, which now contaminate surrounding communities. Fluvial transport plays an intermittent yet important and relatively undocumented role in the migration and dispersal of As-contaminated mine wastes in semi-arid climates. Assessing the contribution of fluvial systems to tailings mobilization is critical in order to assess the distribution and long-term exposure potential of tailings in a mining-impacted environment. Extensive sampling, chemical analysis, and geospatial mapping of dry streambed (wash) sediments, tailings piles, alluvial fans, and rainwater runoff at multiple mine sites have aided the development of a conceptual model to explain the fluvial migration of mine wastes in semi-arid climates. Intense and episodic precipitation events mobilize mine wastes downstream and downslope as a series of discrete pulses, causing dispersion both down and lateral to washes with exponential decay behavior as distance from the source increases. Accordingly a quantitative model of arsenic concentrations in wash sediments, represented as a series of overlapping exponential power-law decay curves, results in the acceptable reproducibility of observed arsenic concentration patterns. Such a model can be transferable to other abandoned mine lands as a predictive tool for monitoring the fate and transport of arsenic and related contaminants in similar settings. Effective remediation of contaminated mine wastes in a semi-arid environment requires addressing concurrent changes in the amounts of potential tailings released through fluvial processes and the transport capacity of a wash.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号