首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   10篇
  国内免费   8篇
安全科学   4篇
综合类   25篇
基础理论   1篇
灾害及防治   2篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
排序方式: 共有32条查询结果,搜索用时 593 毫秒
11.
牛笑笑  钟艳梅  杨璐  易嘉慧  慕航  吴倩  洪松  何超 《环境科学》2023,44(4):1830-1840
基于2015~2020年中国333个城市PM2.5和O3浓度监测数据,利用空间聚类、趋势分析和地理重力模型等方法,定量分析我国主要城市的PM2.5-O3复合污染特征和时空演变格局.结果表明:(1) PM2.5和O3浓度存在协同变化规律,当ρ(PM2.5_mean)≤85μg·m-3时,ρ(PM2.5_mean)和ρ(O3_perc90)存在同步增长的现象;当ρ(PM2.5_mean)处于国家Ⅱ级限值(35±10)μg·m-3时,ρ(O3_perc90)平均值的峰值增速最快;当ρ(PM2.5_mean)>85μg·m-3时,ρ(O3_perc90)平均值出现显著下降趋势.(2)我国城市PM2.5和O3  相似文献   
12.
为研究传动比对轻型车CO2、CO、PN、NOx排放以及动力学参数的影响,选择4辆7挡干式双离合变速器轻型车作为试验车辆在相同道路上进行实际行驶排放(real driving emission,RDE)试验,依据传动比对数据进行划分. 结果表明:①随着传动比、相对正加速度(relative positive acceleration,RPA)的升高,CO2、CO、NOx排放因子以及未装汽油机颗粒捕集器(gasoline particulate filter,GPF)车辆的PN排放因子均呈增加趋势. 其中,CO2、CO、PN (未装GPF)的排放因子与传动比的相关系数平均值分别为0.963、0.933、0.949,与RPA的相关系数平均值分别为0.971、0.955、0.975,均呈显著正线性相关;NOx排放因子与传动比、RPA的相关系数平均值分别为0.567、0.543,相关性均较弱. ②以传动比作为变量的轻型车排放因子分析方法表明,随着传动比的升高,单位里程中发动机的工作循环与排放次数均增加,CO2与污染物排放因子呈增加趋势,这解释了CO2、CO、PN (未装GPF)、NOx的排放因子均与传动比呈正线性相关的原因. ③RPA与传动比的相关系数平均值为0.953,二者呈显著正线性相关. v·apos_[95](车速与大于0.1 m/s2正加速度乘积的第95个百分位)与传动比的相关系数平均值为?0.487,呈负线性相关,且相关性较弱. 增加低速挡使用时间,RPA呈升高趋势,v·apos_[95]呈降低趋势,可远离行程无效判定界限,从而提高RDE试验动力学检验通过几率. 研究显示,传动比、RPA与CO2、CO、PN (未装GPF)的排放因子均呈显著相关,借助调节传动比对碳和污染物排放进行控制,为减少汽车实际行驶排放提供了新的途径.   相似文献   
13.
为分析我国枯水期地表水水质的空间分布规律,识别其空间格局,基于我国31个省(自治区、直辖市)枯水期(2021年1—2月)地表水监测断面的融合数据(不包括港澳台地区数据,下同),运用空间自相关、空间聚类和热点分析方法进行研究. 结果表明:①我国枯水期地表水水质在空间分布上呈现出西部和中部地区以GB 3838—2002《地表水环境质量标准》Ⅰ类和Ⅱ类为主、东部和东北地区以Ⅲ类和Ⅳ类水体为主的非对称分布特征;在空间上表现为显著的正向高聚集格局,并被高/低聚类和热点分析中不显著断面所在的长条状区域分界线(即福建省中部—江西省北部—湖北省—陕西省),粗略地划分为重污染区和轻污染区两大区域. ②以水质优Ⅲ比率0.9为标准形成的分界线位置与污染区域划分界线基本一致,证明了我国枯水期地表水污染区域识别结果的准确性. ③重污染区水质污染程度在统计学上显著(双样本T检验中P<0.05)高于轻污染区,两大区域内的断面水质指标相关性(分别为0.83和0.47)均高于两大区域间的断面水质指标相关性(0.45). 研究显示,我国枯水期地表水水质具有显著的高聚集特征,且这种聚集特征与我国地表水资源的分布和污染物的排放有密切关系.   相似文献   
14.
对烟花爆竹药剂典型氧化剂与还原剂的二元混合物在不同温度的条件下进行撞击感度及摩擦感度测试,分析不同氧化剂、还原剂及温度对二者混触的影响规律。结果表明:含有硫磺的药剂撞击感度值较大,含有镁铝合金粉的药剂摩擦感度值较大;随着温度升高,药剂的撞击感度值升高,而不同药剂的摩擦感度值表现出不同趋势,这与机械撞击和摩擦作用下起爆机理不同有很大的关系,并从理论上对实验结果进行分析。  相似文献   
15.
16.
基于中国168个大气污染防治重点城市2015~2020年的5种污染物浓度监测数据,利用MAKESENS模型和综合风险指数(ARI),定量分析全国与6大城市群的大气污染总健康风险的时空分布特征.结果表明:(1)中国重点城市PM2.5污染最严重,仅15%的城市PM2.5浓度6 a均值达到了国家二级标准,NO2次之,77%的城市NO2浓度6 a均值达到了国家二级标准,京津冀和汾渭平原城市群空气污染最严重,PM2.5、 SO2、 CO和NO2浓度6 a均值高于其他城市群;(2)中国重点城市PM2.5、 SO2、 CO和NO2浓度呈下降趋势,除成渝城市群外,其余地区O3浓度呈上升趋势;京津冀和汾渭平原城市群SO2浓度下降最显著;(3)中国重点城市大气污染健康风险总体呈下降趋势,2017~2018年出现急剧下降,暴露在极高风险下的人口从1...  相似文献   
17.
使用便携式排放测试系统(PEMS)在一辆状态良好的重型柴油货车上进行实际道路排放试验,研究发动机转速、负荷、行驶档位、车速与排放的关系。结果表明:NO_x、CO_2排放速率随发动机转速、负荷的上升而增加。NO_x、CO_2、CO排放因子随档位升高呈先急后缓的降低趋势,随传动比减小呈较为线性的降低趋势;同一档位行驶时,NO_x、CO_2排放因子、排放速率均随车速的升高而增加。因此,对于此类重型柴油车辆,为降低排放,应尽量使用高档位在相应的中、低车速下行驶。  相似文献   
18.
DOC技术对柴油机排放颗粒物数浓度的影响   总被引:5,自引:4,他引:1       下载免费PDF全文
利用ELPI(电子低压冲击器)对不同转速、不同负荷以及安装DOC(氧化催化转化器)前后颗粒物排放及粒径分布进行了研究. 结果表明:无论安装DOC与否,柴油机排放颗粒物数浓度均随发动机转速的增加而增加. 增大负荷,颗粒物数浓度峰值处的粒径也随之增大. 经过DOC催化转化后,柴油机排放颗粒物的大部分仍呈单峰正态分布,且DOC对核模态粒子的氧化转化效率较高. 经过DOC后,在低转速下,不同粒径的颗粒物数浓度均有所降低;中、高转速下,DOC对粒径大于120 nm的颗粒物数浓度无明显降低作用.   相似文献   
19.
利用趋势分析(TA)、地理时空加权回归模型(GTWR)和多因素广义相加模型(MGAM),研究了2015~2020年华北地区O3浓度的时空分布规律及驱动因素间的复杂非线性关系.结果表明,华北地区年均O3浓度>70μg/m3,整体呈持续增长趋势,平均增加速率为2.3μg/(m3·a)(P<0.01);季节上O3浓度呈春夏高...  相似文献   
20.
基于中国东部地区黑碳气溶胶(BC)减排的严峻形势,开展武汉市黑碳气溶胶的水平方向观测和垂直方向模拟工作,了解武汉市黑碳气溶胶的含量和沉降通量的时空变化规律及其主要影响因素,明确黑碳气溶胶释放、输送和沉降规律,对深入地认识黑碳气溶胶的气候和生物地球化学效应具有理论意义。运用Meteoinfolab软件、轨迹分析、相关分析及多种模型拟合等方法,实测武汉市2015年7月—2016年6月黑碳气溶胶水平向分布数据,以WRF-CMAQ模型运行的模拟数据作为垂直向分布的基础数据,分析其空间分布规律;选择气象因子、污染物构成、环流因子、下垫面因子等主导因子,分析它们对武汉市黑碳气溶胶质量浓度空间分布规律的影响。结果表明,(1)BC质量浓度受温度、能见度、气压影响较大,相关系数分别为-0.637、-0.549、0.574。当风速小于2 m?s~(-1)、风向为东北或者东北偏北时,BC质量浓度达到最高值;当风速大于2 pH、风向为西南偏南时,BC质量浓度出现最低值。垂直方向上,低层和高层黑碳浓度主要受风速影响,而中层黑碳浓度则主要受温度影响。(2)BC质量浓度与PM_(2.5)、PM_(10)、CO相关系数为0.863、0.657、0.647,同源性强,采用三次曲线模型对BC与三者之间的关系分别进行拟合,效果最佳。(3)后向轨迹分析表明:武汉市高空气流来自于远源及海洋地区;中低空夏秋季节主要受较短距离的运输气流影响。(4)武汉市黑碳质量浓度受与主干道距离、植被覆盖率、水体分布等下垫面因素影响较大,空间分布差异明显。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号