首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   44篇
  国内免费   31篇
安全科学   4篇
综合类   106篇
基础理论   12篇
污染及防治   4篇
评价与监测   8篇
  2024年   2篇
  2023年   5篇
  2022年   10篇
  2021年   8篇
  2020年   8篇
  2019年   10篇
  2018年   9篇
  2017年   9篇
  2016年   1篇
  2015年   6篇
  2014年   9篇
  2013年   5篇
  2012年   6篇
  2011年   4篇
  2010年   7篇
  2009年   6篇
  2008年   7篇
  2007年   2篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2000年   1篇
排序方式: 共有134条查询结果,搜索用时 0 毫秒
91.
典型工业恶臭源恶臭排放特征研究   总被引:11,自引:0,他引:11       下载免费PDF全文
恶臭污染具有主观性和复杂性特点,结合使用仪器分析和嗅觉方法,可以从成分和感官两方面充分反映恶臭污染特征.本文参考USEPA TO14A和GB/T 14675-93方法,选择天津滨海新区内的6个不同类型的工业恶臭源,包括制药、喷漆、炼油、石化、树脂合成和橡胶,采集了各类源工艺流程中通过有组织方式排放的恶臭废气,测定了废气的感官臭气浓度并定量分析了其中的恶臭VOCs物质.使用臭气浓度、恶臭指数及统计学方法进行研究,结果发现,炼油源和制胶源的废气具有非常严重的感官刺激性.甲硫醇等硫化物是炼油源和制胶源的主要特征恶臭物质;苯乙烯和甲苯分别是合成树脂源和喷涂源的特征恶臭组分;对苯二甲酸(PTA)源和制药源属于混合型恶臭源.甲苯是喷漆源和制药源的标识组分;二硫化碳是制胶源的标识组分;间,对-二甲苯可以用来标识石化PTA污染源;炼油源的标识组分为三氯乙烯、氯乙烷和1,2-二溴乙烷;苯乙烯是合成树脂源的标识组分.  相似文献   
92.
大气颗粒物中包含多种组分的气溶胶,其中碳质气溶胶由于对人体健康、能见度有较大影响,已受到越来越多的关注.为研究碳质气溶胶的长期变化规律,采集了成都市2009—2013年的PM10样品,对其中所含的无机元素、水溶性离子及碳组分分别进行测定,并使用“PMF(正定矩阵因子分解法)-比值”模型分别对PM10和所含的碳质气溶胶的来源进行分析.结果表明,1月、2月、5月和12月的碳质气溶胶浓度较高,其中1月、2月和12月的OC/EC(有机碳与元素碳质量浓度之比)较高,并且PMF-比值模型计算结果也显示冬季SOC增多,表明冬季可能有更多的二次有机碳(SOC)生成;5月的char-EC/soot-EC(二者质量浓度之比,其中char-EC=EC1-OP,soot-EC=EC2+EC3,它们可更好地区分源类)较高,K含量也较高,表明可能有更多的生物质燃烧排放.PM10解析共发现6类源,依次为地壳扬尘(26.5%)、二次硫酸盐(25.1%)、燃煤&生物质燃烧混合源(17.3%)、二次硝酸盐&二次有机碳混合源(12.3%)、机动车源(11.8%)和水泥尘源(7.0%);碳质气溶胶解析发现,OC主要来源依次为机动车源(38.2%)、燃煤&生物质燃烧混合源(33.1%)和二次有机碳(25.3%),char-EC的主要来源是燃煤&生物质燃烧混合源和机动车源,分别占50.5%和45.4%,soot-EC则主要受机动车影响(达73.2%).研究显示,成都市PM10主要来自于地壳扬尘、二次生成和燃煤&生物质燃烧,而碳质气溶胶主要来自于机动车、燃煤&生物质燃烧.   相似文献   
93.
根据济南市颗粒物排放源的特点,通过采样分析获取了济南市大气颗粒物排放源(土壤风沙尘、扬尘、煤烟尘、机动车尾气尘)的粒度谱、多环芳烃成分谱,为济南市大气颗粒物中多环芳烃的源解析,提供可靠的基础数据。  相似文献   
94.
2007年2月在攀枝花市不同功能区采集了大气PM10样品42个和污染源样品32个,采用超声抽提GC/MS方法测定分析了16种多环芳烃(PAHs)的含量。结果显示攀枝花市PM10颗粒相PAHs单体浓度范围为0.34~416.45ng/m3,总量浓度范围为24.56~2569.66ng/m3;攀枝花市5个采样点中河门口片区PM10多环芳烃单体浓度范围为5.64~416.45ng/m3,污染最严重。源样品测定结果分别为扬尘78.74ug/g,煤烟尘6.12ug/g,钢铁工业尘30.54ug/g,焦化尘3187.42ug/g。应用比值法和化学质量平衡(CMB)模型对污染源进行识别,燃煤和炼焦是攀枝花市PAHs的主要来源,对攀枝花市大气可吸入颗粒物中多环芳烃污染的分担率分别为55.8%、19.9%。  相似文献   
95.
目前国内外关于道路扬尘排放的计算多采用美国环境保护局推荐的AP-42排放因子法,直接计算道路扬尘的年均排放总量,但其动态化程度不足,难以满足日益增长的精细化管理需求. 本研究采用车速-流量模型构建高时间分辨率的道路车流量获取方法. 以天津市为例,采用自下而上的方法,结合本地化的排放因子以及天津市采取的道路扬尘控制措施,借助GIS平台编制高时空分辨率的道路扬尘排放清单,精细反映天津市道路扬尘排放的时空分布特征. 结果表明:①时间尺度上,受早晚高峰的影响,城市道路在08:00—09:00与18:00—19:00扬尘排放强度较大,13:00—14:00是白天扬尘排放强度的低值时段. ②空间尺度上,夜间(03:00—04:00)道路扬尘排放强度的高值区域集中在高速路段,白天扬尘排放强度的低值时段(13:00—14:00)集中在城市道路中支路密集的地区,道路扬尘排放强度高峰时期(18:00—19:00)集中在各类型的城市道路. 全年道路扬尘排放高值区域集中在城市支路和郊区道路. ③天津市内六区全年道路扬尘PM2.5、PM10、TSP排放量分别为603、2 492和12 986 t,相较以往研究有所下降. 从区域看,道路扬尘排放总量呈偏远郊区>环城四区>市内六区的规律. 城市道路采取的洒水措施明显降低了道路扬尘排放总量. 研究显示,受交通扰动影响,道路扬尘排放呈现明显的时空分布差异.   相似文献   
96.
为了解多种新型受体模型的适用性,利用正定矩阵分解/多元线性引擎2-物种比值(PMF/ME2-SR)、偏目标转换-正定矩阵分解(PTT-PMF)、正定矩阵分解(PMF)和化学质量平衡(CMB)这4种受体模型对我国北方典型城市细颗粒物(PM2.5)数据进行同步解析并互相验证.结果发现,燃煤源(25%~26%)、扬尘源(19%~21%)、二次硝酸盐(17%~19%)、二次硫酸盐(16%)、机动车源(13%~15%)、生物质燃烧源(4%~7%)和钢铁源(1%~2%)这7种主要污染源对研究地区PM2.5有贡献.通过比较不同模型获得的源成分谱和源贡献以及计算各源的差异系数(CD)和平均绝对误差(AAE),发现4种模型的解析结果具有较高的一致性(平均CD值在0.6~0.7之间),但不同模型对各污染源中组分的识别存在差异.相比于传统PMF模型,PMF/ME2-SR模型由于纳入一次源类的特征比值,能够更好地区分源谱特征较为相似的源类,如扬尘源的CD和AAE分别比PMF模型低15%和54%; PTT-PMF模型以实测一次源谱和虚拟二次源谱为约束目标,计算的二次硫...  相似文献   
97.
大气环境监测数据的质控,特别是异常数据的精准判别是准确分析大气污染成因的重要前提.目前对于异常值的判别主要基于人工经验,这对于快速有效地从海量环境数据中剔除异常值进而保证分析数据的准确性带来巨大挑战.结合大气污染物监测数据的时间序列波动特点,本文基于滑动窗口机制和统计学指标分别构建了滑动四分位、滑动四分位差距及滑动标准差等异常值快速判别方法,然后利用含有异常值的清洁天和污染天常规大气污染物(PM2.5、PM10、SO2、NO2、CO和O3)时间序列数据对3种异常值判别方法的有效性进行测试评估,从而得到不同污染物异常值判别的最优方法及相关参数指标.结果表明:无论是清洁天还是污染天,滑动四分位法对PM2.5、PM10、SO2、NO2、CO和O3浓度时间序列异常值的判别效果均最优.其中,清洁天最优滑动窗口长度范围分别为10~16、14~16、12~16、38~40、6~38和...  相似文献   
98.
为了研究在线离子色谱法测定大气PM2.5中NH4^+、NO3^-、SO4^2-的不确定性来源,探讨了标准曲线的浓度范围及浓度梯度设置对离子浓度结果的影响,并对标准曲线设定方案进行了优化。结果表明:不同浓度范围的标准曲线对于NH4+的浓度结果有较大的影响,存在1. 87%~14. 91%的偏差,对于NO3^-、SO4^2-的影响较小,相对偏差分别为2. 94%和2. 82%;非均匀布点和均匀布点标准曲线定量NH4+的结果存在4. 15%~4. 25%的偏差,对于NO3^-和SO4^2-,相对偏差分别为0. 10%和5. 99%。对于二次拟合的NH4^+,在样品浓度波动较大时,可以将样品划分为低浓度范围和高浓度范围,分别选用低浓度段标准曲线和高浓度段标准曲线,以期得到更合理的浓度结果。  相似文献   
99.
所有城市环境问题的症结都源于城市的不科学发展、不可持续发展。因此,从根本上解决城市环境问题的唯一途径是“源头控制”,这也是实现环境空气质量改善和达标的根本出路。  相似文献   
100.
为了明确驻马店市区PM2.5污染特征及贡献源类,2019年1—3月在驻马店市区2个采样点采集PM2.5样品,分析了其化学组分特征;结合PMF和后向轨迹模型构建了PM2.5的时间和空间来源解析方法,并对该解析方法进行应用.结果表明:①采暖季,驻马店市区环境空气中ρ(PM2.5)平均值为117 μg/m3,NO3-和OC是其主导组分;ρ(OC)和ρ(EC)分别达18.2和5.2 μg/m3,且ρ(OC)/ρ(EC)平均值为3.5,说明机动车源和燃煤源的影响较明显.②ρ(SO42-)与ρ(NO3-)相关性显著(R=0.80,P < 0.01),表明SO42-和NO3-具有较高的同源性.③重污染过程中ρ(SNA)(SNA为SO42-、NO3-和NH4+三者统称)平均值为61.5 μg/m3,显著高于清洁期;重污染过程中硫氧化率(SOR)和氮氧化率(NOR)分别达0.42和0.39,说明存在明显的二次离子生成过程.④重污染过程中Si、Al、Mg等地壳类元素的浓度和占比均高于清洁期,说明重污染过程中扬尘源的贡献可能较高.⑤来源解析结果表明,二次源是采暖季PM2.5的最大贡献源,贡献率为32.6%,其次为扬尘和生物质燃烧混合源(26.4%)、机动车源(21.4%)、燃煤源(13.2%)和工业源(6.3%);两次重污染过程中的最大贡献源分别为二次源(54.5%)和机动车源(46.2%),清洁期的主要贡献源主要为二次源(45.2%)和燃煤源(29.8%).从空间变化来看,扬尘和生物质燃烧混合源对天方二分厂的贡献率(29.3%)明显高于对彩印厂的贡献率(23.3%),而燃煤源对彩印厂的贡献率(16.5%)高于对天方二分厂的贡献率(10.1%),其他源类的贡献率相差不大.正东、东南以及西北方向是彩印厂和天方二分厂各类源的主要贡献方向.研究显示:二次源是采暖季、重污染期间和清洁期最大的贡献源;相比于清洁期,重污染期间扬尘和生物质燃烧混合源贡献增加.源类贡献存在空间差异,正东、东南及西北方向是采样点各类源主要贡献方向.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号